File size: 18,139 Bytes
3b3be44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501

# test.py β€” Agentic logic using OpenAI + MCP tools (langchain_core for parsing)

import os
import json
from typing import Any, Dict, Optional, List, Literal, Type

from pydantic import BaseModel, ValidationError
from openai import OpenAI
from langchain_core.output_parsers import PydanticOutputParser  # ← requested parser

# -------------------- OpenAI setup --------------------
OAI_MODEL = os.getenv("OAI_MODEL", "gpt-4o-mini")
client_oai = OpenAI(api_key="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")


def _format_history_for_context(
    conversation: List[Dict[str, str]],
    max_turns: int = 8
) -> str:
    """
    Convert the last N messages from the session into a compact context string.
    Expected item format: {"role": "user"|"assistant", "content": "..."}.
    """
    if not conversation:
        return ""
    window = conversation[-max_turns:]
    lines = []
    for m in window:
        role = m.get("role", "user")
        content = m.get("content", "").strip()
        if not content:
            continue
        if role == "user":
            lines.append(f"User: {content}")
        else:
            lines.append(f"Assistant: {content}")
    return "\n".join(lines)



def llm_invoke(
    prompt: str,
    system: str = "You are a helpful assistant. Return JSON when requested.",
    temperature: float = 0.0,
) -> str:
    """
    Invoke OpenAI Chat Completions for planning/intent classification (low temperature).
    """
    resp = client_oai.chat.completions.create(
        model=OAI_MODEL,
        messages=[
            {"role": "system", "content": system},
            {"role": "user", "content": prompt},
        ],
        temperature=temperature,
    )
    return resp.choices[0].message.content

# -------------------- Pydantic models --------------------
class IntentSpec(BaseModel):
    in_scope: bool
    intent: Literal["in_scope", "out_of_scope", "chit_chat"]
    reason: Optional[str] = None

class SubQuery(BaseModel):
    id: str
    query: str
    tool_name: Literal["ask_excel", "ask_pdf", "ask_link"]
    required_params: Dict[str, Any]
    depends_on: List[str] = []

class PlanResponse(BaseModel):
    subqueries: List[SubQuery]

class ContextEnhancer(BaseModel):
    answer_found: bool
    needs_enhancement: bool
    enhanced_query: Optional[str] = None
    cached_answer: Optional[str] = None
    reason: Optional[str] = None

# -------------------- JSON parsing via langchain_core --------------------
def _safe_json(text: str) -> str:
    """
    Heuristic sanitizer: strip code fences and extract the main JSON block
    to help PydanticOutputParser if the model adds extra text.
    """
    t = text.strip()
    if t.startswith("```"):
        # Remove triple backtick fences; allow optional 'json' hint
        t = t.strip("`").strip()
        if t.lower().startswith("json"):
            t = t[4:].strip()
    # Try direct JSON
    try:
        json.loads(t)
        return t
    except Exception:
        pass
    # Fallback: find first '{' and last '}'
    start = t.find("{")
    end = t.rfind("}")
    if start != -1 and end != -1 and end > start:
        return t[start : end + 1]
    return text

def parse_response(text: str, model_spec: Type[BaseModel]) -> BaseModel:
    """
    Parse into a Pydantic model using langchain_core's PydanticOutputParser,
    with a robust fallback to standard json+pydantic if needed.
    """
    parser = PydanticOutputParser(pydantic_object=model_spec)
    # First try parser.parse() directly
    try:
        return parser.parse(text)
    except Exception:
        pass
    # Fallback: sanitize and try again
    try:
        return parser.parse(_safe_json(text))
    except Exception:
        # Last fallback: manual pydantic construction
        data = json.loads(_safe_json(text))
        return model_spec(**data)

# -------------------- Prompts (intent + planning) --------------------

'''
def intent_prompt(query: str, available_iits: List = [], available_branches: List = [], years: List = []) -> str:
    parser = PydanticOutputParser(pydantic_object=IntentSpec)
    fmt = parser.get_format_instructions()  # <- tells the LLM the exact JSON keys/types
    
    return f"""You are an intent classifier for a JOSAA Counseling Assistant.

Supported IITs: {', '.join(available_iits)}
Supported Branches: {', '.join(available_branches)}
Available Data: opening/closing ranks ({', '.join(years)}), curriculum, NIRF, placements/faculty/research/facilities.

Classify the user's message into EXACTLY ONE of:
- "chit_chat"
- "in_scope"
- "out_of_scope"

Rules:
- "chit_chat" for greetings/small talk (hi/hello/how are you/what can you do).
- "in_scope" for queries about SUPPORTED IITs/branches, counseling, ranks/cutoffs, courses, curriculum, NIRF, placements, faculty, research, alumni/distinguished alumni and campus facilities.
- "out_of_scope" otherwise.

Return ONLY a JSON object following these instructions:
{fmt}

User query: "{query}"
""".strip()
'''

def intent_prompt(
    query: str,
    available_iits: List = [],
    available_branches: List = [],
    years: List = [],
    conversation_context: str = ""     # NEW
) -> str:
    parser = PydanticOutputParser(pydantic_object=IntentSpec)
    fmt = parser.get_format_instructions()

    convo = f"\n\nRecent conversation:\n{conversation_context}\n\n" if conversation_context else "\n\n"
    return f"""You are an intent classifier for a JOSAA Counseling Assistant.

Supported IITs: {', '.join(available_iits)}
Supported Branches: {', '.join(available_branches)}
Available Data: opening/closing ranks ({', '.join(years)}), curriculum, NIRF, placements/faculty/research/facilities.{convo}
Classify the user's message into EXACTLY ONE of:
- "chit_chat"
- "in_scope"
- "out_of_scope"

Rules:
- "chit_chat" for greetings/small talk (hi/hello/how are you/what can you do).
- "in_scope" for queries about SUPPORTED IITs/branches, counseling, ranks/cutoffs, courses, curriculum, NIRF, placements, faculty, research, alumni/distinguished alumni and campus facilities.
- "out_of_scope" otherwise.

Return ONLY a JSON object following these instructions:
{fmt}

User query: "{query}"
""".strip()

'''
def planning_prompt(query: str, available_iits: List = [], available_branches: List = [], years: List = []) -> str:
    parser = PydanticOutputParser(pydantic_object=PlanResponse)
    fmt = parser.get_format_instructions()
    return f"""You are a query planner for a JEE counseling assistant.

AVAILABLE TOOLS:
- ask_excel β€” ranks/cutoffs; params may include iit_name, branch, year
- ask_pdf   β€” curriculum/NIRF; params may include iit_name, branch
- ask_link  β€” placements/faculty/research/facilities; params may include iit_name, branch, or a URL

Break the user query into specific subqueries targeting ONE tool each.
Use ONLY supported IIT names and branch names when present.

Return ONLY a JSON object following these instructions:
{fmt}

User Query: "{query}"
""".strip()
'''

def planning_prompt(
    query: str,
    available_iits: List = [],
    available_branches: List = [],
    years: List = [],
    conversation_context: str = ""     # NEW
) -> str:
    parser = PydanticOutputParser(pydantic_object=PlanResponse)
    fmt = parser.get_format_instructions()

    convo = f"\n\nRecent conversation:\n{conversation_context}\n\n" if conversation_context else "\n\n"
    return f"""You are a query planner for a JEE counseling assistant.

AVAILABLE TOOLS:
- ask_excel β€” ranks/cutoffs
- ask_pdf   β€” curriculum/NIRF
- ask_link  β€” placements/faculty/research/facilities{convo}
Break the user query into specific subqueries targeting ONE tool each.

Return ONLY a JSON object following these instructions:
{fmt}

User Query: "{query}"
""".strip()


# -------------------- Intent detection & planning --------------------
'''
def intent_detect(user_q: str, available_iits: List, available_branches: List, years: List) -> IntentSpec:
    response = llm_invoke(intent_prompt(user_q, available_iits, available_branches, years), temperature=0.0)
    print("intent is", f"{response}")
    try:
        return parse_response(response, IntentSpec)
    except Exception as e:
        # default to out_of_scope if parsing fails
        return IntentSpec(in_scope=False, intent="out_of_scope", reason=f"Parse error: {e}")
'''

def intent_detect(
    user_q: str,
    available_iits: List,
    available_branches: List,
    years: List,
    conversation_context: str           # NEW
) -> IntentSpec:
    response = llm_invoke(
        intent_prompt(user_q, available_iits, available_branches, years, conversation_context),
        temperature=0.0
    )
    return parse_response(response, IntentSpec)


'''
def make_query_plan(user_q: str, available_iits: List, available_branches: List, years: List) -> PlanResponse:
    response = llm_invoke(planning_prompt(user_q, available_iits, available_branches, years), temperature=0.0)
    return parse_response(response, PlanResponse)
'''

def make_query_plan(
    user_q: str,
    available_iits: List,
    available_branches: List,
    years: List,
    conversation_context: str            # NEW
) -> PlanResponse:
    response = llm_invoke(
        planning_prompt(user_q, available_iits, available_branches, years, conversation_context),
        temperature=0.0
    )
    return parse_response(response, PlanResponse)


# -------------------- MCP tool registry (real calls) --------------------
def _build_query_text(query: str, params: Dict[str, Any]) -> str:
    """Compose a single question string using the planner's params and description."""
    if not params:
        return query
    param_str = "; ".join(f"{k}: {v}" for k, v in params.items())
    return f"{query}\nParameters: {param_str}"

'''
def make_tool_registry(mcp_client) -> Dict[str, Any]:
    """
    Return callables that invoke actual MCP tools via your client.
    """
    def call_ask_excel(query: str, required_params: Dict[str, Any], temperature: float = 0.1, top_k: int = 5) -> str:
        q_text = _build_query_text(query, required_params)
        return mcp_client.ask_excel(
            question=q_text,
            top_k=top_k,
            sheet=required_params.get("sheet", 0),
            temperature=temperature,
        )

    def call_ask_pdf(query: str, required_params: Dict[str, Any], temperature: float = 0.1, top_k: int = 5) -> str:
        q_text = _build_query_text(query, required_params)
        return mcp_client.ask_pdf(
            question=q_text,
            top_k=top_k,
            temperature=temperature,
        )

    def call_ask_link(query: str, required_params: Dict[str, Any], temperature: float = 0.1, top_k: int = 5) -> str:
        q_text = _build_query_text(query, required_params)
        return mcp_client.ask_link(
            question=q_text,
            temperature=temperature,
            subquery_context=required_params.get("subquery_context"),
            top_k=top_k,
        )

    return {
        "ask_excel": call_ask_excel,
        "ask_pdf":   call_ask_pdf,
        "ask_link":  call_ask_link,
    }
'''

# AFTER (CHANGE):
def make_tool_registry(mcp_client, conversation_context: str) -> Dict[str, Any]:
    def _build_query_text(query: str, params: Dict[str, Any], conversation_context: str) -> str:
        parts = [query.strip()]
        if params:
            parts.append("Parameters: " + "; ".join(f"{k}: {v}" for k, v in params.items()))
        if conversation_context:
            parts.append("Conversation context:\n" + conversation_context)
        return "\n".join(parts)

    def call_ask_excel(query, required_params, temperature=0.1, top_k=5):
        q_text = _build_query_text(query, required_params, conversation_context)
        return mcp_client.ask_excel(question=q_text, top_k=top_k, sheet=required_params.get("sheet", 0), temperature=temperature)

    def call_ask_pdf(query, required_params, temperature=0.1, top_k=5):
        q_text = _build_query_text(query, required_params, conversation_context)
        return mcp_client.ask_pdf(question=q_text, top_k=top_k, temperature=temperature)

    def call_ask_link(query, required_params, temperature=0.1, top_k=5):
        q_text = _build_query_text(query, required_params, "")  # put convo in subquery_context instead
        subctx = conversation_context if conversation_context else required_params.get("subquery_context")
        # IMPORTANT: align param name with your server (query vs question)
        return mcp_client.ask_link(
            query=q_text,                      # if server expects 'query'; use question=q_text otherwise
            temperature=temperature,
            subquery_context=subctx,
            top_k=top_k,
        )

    return {"ask_excel": call_ask_excel, "ask_pdf": call_ask_pdf, "ask_link": call_ask_link}

# -------------------- Execute subqueries & synthesize final --------------------
def build_execution_order(subqueries: List[SubQuery]) -> List[List[str]]:
    """
    Create batches of IDs whose dependencies are satisfied (simple topological batching).
    """
    if not subqueries:
        return []
    remaining = {sq.id: sq for sq in subqueries}
    completed = set()
    order: List[List[str]] = []
    while remaining:
        ready = [sq_id for sq_id, sq in remaining.items() if all(dep in completed for dep in sq.depends_on)]
        if not ready:
            raise ValueError(f"Circular or unsatisfiable dependencies: {list(remaining.keys())}")
        order.append(ready)
        for sq_id in ready:
            completed.add(sq_id)
            del remaining[sq_id]
    return order

#def execute_plan(
#    user_q: str,
#    plan: PlanResponse,
#    mcp_client,
#    temperature: float = 0.1,
#    top_k: int = 5
#) -> Dict[str, Any]:
#    """
#    Execute subqueries in batches; returns a dict of {sq_id: {tool, answer}}.
#    """
#    registry = make_tool_registry(mcp_client)

def execute_plan(user_q, plan, mcp_client, conversation_context: str, temperature=0.1, top_k=5):
    registry = make_tool_registry(mcp_client, conversation_context)
    subqs = plan.subqueries
    exec_order = build_execution_order(subqs)
    results: Dict[str, Any] = {}

    for batch in exec_order:
        for sq_id in batch:
            sq = next(s for s in subqs if s.id == sq_id)
            tool_fn = registry.get(sq.tool_name)
            if not tool_fn:
                results[sq_id] = {"tool": sq.tool_name, "answer": f"❌ Unknown tool '{sq.tool_name}'"}
                continue
            try:
                ans = tool_fn(sq.query, sq.required_params, temperature=temperature, top_k=top_k)
                results[sq_id] = {"tool": sq.tool_name, "answer": ans}
            except Exception as e:
                results[sq_id] = {"tool": sq.tool_name, "answer": f"❌ Error calling tool: {e}"}

    return {"execution_order": exec_order, "results": results}

'''
def synthesize_answer(user_q: str, exec_result: Dict[str, Any]) -> str:
    """
    Use OpenAI to write a concise final answer using all tool outputs.
    """
    tool_outputs = []
    for batch in exec_result.get("execution_order", []):
        for sq_id in batch:
            entry = exec_result["results"].get(sq_id, {})
            tool_outputs.append(f"[{sq_id} β€’ {entry.get('tool')}] {entry.get('answer', '')}")
    context = "\n".join(tool_outputs) if tool_outputs else "(no tool outputs)"

    prompt = f"""You are a helpful assistant for JEE/JOSAA counseling.

User Question:
{user_q}

Tool Results:
{context}

Write a concise, accurate final answer grounded in the tool results.
If the tool results are insufficient, state that clearly.
Avoid bracketed tags and avoid repeating metadata like [sq1].
"""
    return llm_invoke(prompt, system="You are a helpful assistant. Use only provided context.", temperature=0.2)
'''

# AFTER (CHANGE):
def synthesize_answer(user_q, exec_result, conversation_context: str):
    tool_outputs = []
    # ...
    prompt = f"""You are a helpful assistant for JEE/JOSAA counseling.

Recent conversation:
{conversation_context or "(none)"}

User Question:
{user_q}

Tool Results:
{exec_result}

Write a concise, accurate final answer grounded in the tool results and the recent conversation.
If the available context is insufficient, state that clearly.
Avoid bracketed tags and metadata like [sq1].
"""
    return llm_invoke(prompt, system="You are a helpful assistant. Use only provided context.", temperature=0.2)

# -------------------- Public entry point used by chat_app --------------------


# AFTER (CHANGE):
def run_agent(
    user_q: str,
    mcp_client,
    available_iits: List[str],
    available_branches: List[str],
    years: List[str],
    conversation: List[Dict[str, str]],      # NEW
    top_k: int = 5,
    temperature: float = 0.1,
) -> str:
    conversation_context = _format_history_for_context(conversation, max_turns=8)

    intent = intent_detect(user_q, available_iits, available_branches, years, conversation_context)
    print(intent)

    print("The intent response is", f"{intent}")
    if intent.intent == "chit_chat":
        return (
            f"Hi! I’m your JOSAA Counseling Assistant.\n"
            f"Ask about branches, opening/closing ranks, or options for your rank.\n"
            f"Supported IITs: {', '.join(available_iits)}; branches: {', '.join(available_branches)}."
        )
    if not intent.in_scope or intent.intent == "out_of_scope":
        return (
            "This assistant only supports JEE/JOSAA counseling.\n"
            f"Supported IITs: {', '.join(available_iits)}; branches: {', '.join(available_branches)}.\n"
            "Please refine your query accordingly."
        )

    # In-scope β†’ plan β†’ execute β†’ synthesize

    plan = make_query_plan(user_q, available_iits, available_branches, years, conversation_context)
    print(plan)
    exec_result = execute_plan(user_q, plan, mcp_client, conversation_context, temperature=temperature, top_k=top_k)
    final = synthesize_answer(user_q, exec_result, conversation_context)
    return final.strip()