File size: 11,632 Bytes
90bc141
e49b23b
 
 
90bc141
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e49b23b
 
90bc141
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e49b23b
 
90bc141
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e49b23b
90bc141
e49b23b
 
90bc141
e49b23b
 
90bc141
 
 
 
e49b23b
 
 
 
 
 
 
 
 
 
90bc141
e49b23b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import os
import torch.nn.functional as F
import random
from torch_sparse import SparseTensor
import pandas as pd
import torch
from ogb.nodeproppred import PygNodePropPredDataset
from torch_geometric.transforms import RandomLinkSplit
from torch_geometric.data import Data

import requests
import gzip
import shutil


class OGBNLinkPredDataset:
    def __init__(

        self, root_dir: str = "data", val_size: float = 0.1, test_size: float = 0.2

    ):
        self._base_dataset = PygNodePropPredDataset(name="ogbn-arxiv", root=root_dir)
        self.data = self._base_dataset[0]
        self.root = self._base_dataset.root
        self.num_features = self._base_dataset.num_features

        self._download_abstracts()
        self.corpus = self._load_corpus()

        self.val_size = val_size
        self.test_size = test_size

    def _download_abstracts(self):
        target_dir = os.path.join(self.root, "mapping")
        tsv_path = os.path.join(target_dir, "titleabs.tsv")

        if not os.path.exists(tsv_path):
            print("Downloading title and abstract information...")
            gz_path = tsv_path + ".gz"
            url = "https://snap.stanford.edu/ogb/data/misc/ogbn_arxiv/titleabs.tsv.gz"
            os.makedirs(target_dir, exist_ok=True)

            try:
                response = requests.get(url, stream=True)
                response.raise_for_status()
                with open(gz_path, "wb") as f:
                    for chunk in response.iter_content(chunk_size=8192):
                        f.write(chunk)

                with gzip.open(gz_path, "rb") as f_in:
                    with open(tsv_path, "wb") as f_out:
                        shutil.copyfileobj(f_in, f_out)

                os.remove(gz_path)

            except requests.exceptions.RequestException as e:
                print(f"Error downloading file: {e}")
            except Exception as e:
                print(f"An error occurred: {e}")

        else:
            print("Title and abstract file already exists.")

    def _load_corpus(self) -> list[str]:
        tsv_path = os.path.join(self.root, "mapping", "titleabs.tsv")
        try:
            df_text = pd.read_csv(
                tsv_path,
                sep="\t",
                header=None,
                names=["paper_id", "title", "abstract"],
                lineterminator="\n",
                low_memory=False,
            )
            df_text_aligned = df_text.reset_index(drop=True)
            corpus = (
                df_text_aligned["title"].fillna("")
                + "\n "
                + df_text_aligned["abstract"].fillna("")
            ).tolist()
            return corpus
        except FileNotFoundError:
            print("Error: titleabs.tsv not found. Could not create corpus.")
            return []

    def get_splits(self) -> tuple[Data, Data, Data]:
        transform = RandomLinkSplit(
            num_val=self.val_size,
            num_test=self.test_size,
            is_undirected=False,
            add_negative_train_samples=True,
            neg_sampling_ratio=1.0,
        )
        train_split, val_split, test_split = transform(self.data)
        return train_split, val_split, test_split


class OGBNLinkPredNegDataset(OGBNLinkPredDataset):
    """Degree similar hard negatives sampling"""

    def __init__(

        self, root_dir: str = "data", val_size: float = 0.1, test_size: float = 0.2

    ):
        super().__init__(root_dir, val_size, test_size)
        self.degree_tol = 0

    def get_splits(self) -> tuple[Data, Data, Data]:
        transform = RandomLinkSplit(
            num_val=self.val_size,
            num_test=self.test_size,
            is_undirected=False,
            add_negative_train_samples=False,
            neg_sampling_ratio=0.0,
        )
        train_split, val_split, test_split = transform(self.data)

        print("Generating hard negatives...")
        adj_matrix = SparseTensor.from_edge_index(
            train_split.edge_index,  # only from train_split
            sparse_sizes=(self.data.num_nodes, self.data.num_nodes),
        )
        self.degrees = adj_matrix.sum(dim=0).to(torch.long)
        # to prevent creating negative edges that are positive in other split
        self.all_edge_set = set(zip(*self.data.edge_index.tolist()))
        train_split = self._add_balanced_negs(train_split)
        val_split = self._add_balanced_negs(val_split)
        test_split = self._add_balanced_negs(test_split)
        return train_split, val_split, test_split

    def _add_balanced_negs(self, split_data):
        assert (split_data.edge_label == 1).all(), "Expected only positive edges"

        pos_edges = split_data.edge_label_index
        pos_list = pos_edges.t().tolist()
        num_negs = pos_edges.size(1)

        negs = []
        for _ in range(num_negs):
            u, v_orig = random.choice(pos_list)
            target_deg = int(self.degrees[v_orig])

            found = False
            for _ in range(20):
                w = random.randrange(self.data.num_nodes)
                if (
                    (u, w) not in self.all_edge_set
                    and w != u
                    and abs(int(self.degrees[w]) - target_deg) <= self.degree_tol
                ):
                    negs.append((u, w))
                    found = True
                    break

            if not found:
                while True:
                    w = random.randrange(self.data.num_nodes)
                    if (u, w) not in self.all_edge_set and w != u:
                        negs.append((u, w))
                        break

        neg_edges = torch.tensor(negs, dtype=torch.long).t()
        N = pos_edges.size(1)

        split_data.edge_label_index = torch.cat([pos_edges, neg_edges], dim=1)
        split_data.edge_label = torch.cat(
            [
                torch.ones(N, dtype=torch.long, device=pos_edges.device),
                torch.zeros(N, dtype=torch.long, device=pos_edges.device),
            ]
        )

        return split_data


# class OGBNLinkPredNegDataset2(OGBNLinkPredDataset):
#     """Degree and semantically similar hard negatives sampling"""
#
#     def __init__(self, root_dir="data", val_size=0.1, test_size=0.2):
#         super().__init__(root_dir, val_size, test_size)
#
#     def get_splits(self) -> tuple[Data, Data, Data]:
#         transform = RandomLinkSplit(
#             num_val=self.val_size,
#             num_test=self.test_size,
#             is_undirected=False,
#             add_negative_train_samples=False,
#             neg_sampling_ratio=0.0,
#         )
#         train_split, val_split, test_split = transform(self.data)
#
#         print("Generating semantic hard negatives...")
#         train_split = self._add_balanced_negs(train_split)
#         val_split = self._add_balanced_negs(val_split)
#         test_split = self._add_balanced_negs(test_split)
#         return train_split, val_split, test_split
#
#     def _add_balanced_negs(self, split_data):
#         assert (split_data.edge_label == 1).all(), "Expected only positive edges"
#
#         BS = 1_000
#         B = self.data.x.to("cuda", dtype=torch.bfloat16)  # (num_nodes, dim)
#         B = F.normalize(B, p=2, dim=1)
#         K = 100
#
#         pos_edges = split_data.edge_label_index
#         adj_matrix = SparseTensor.from_edge_index(
#             split_data.edge_index,
#             sparse_sizes=(self.data.num_nodes, self.data.num_nodes),
#         )
#         degrees = adj_matrix.sum(dim=0).to("cuda")
#
#         topk_val = torch.empty((BS, K), dtype=torch.bfloat16, device="cuda")
#         topk_idx = torch.empty((BS, K), dtype=torch.int64, device="cuda")
#
#         neg_edges = []
#
#         for i in range(0, pos_edges.shape[1], BS):
#             batch_end = min(i + BS, pos_edges.shape[1])
#             src_idx = pos_edges[0, i:batch_end]  # (batch_size,)
#             dst_idx = pos_edges[1, i:batch_end]  # (batch_size,)
#
#             A = B[src_idx]  # (batch_size, dim)
#
#             with torch.autocast("cuda", dtype=torch.bfloat16):
#                 sim = torch.mm(A, B.t())  # equivalent to cos-sim
#
#                 # mask for similarity with itself and existing edges
#                 sim[torch.arange(len(A)), dst_idx] = -1
#                 sim[torch.arange(len(A)), src_idx] = -1
#                 # TODO: exclude edges from val&test sets
#
#                 torch.topk(sim, K, out=(topk_val, topk_idx))
#                 topk_idx2 = topk_idx[: len(A)]
#
#                 # sample degree matched negs
#                 topk_deg = degrees[topk_idx2]
#                 src_deg = degrees[src_idx]
#
#                 deg_diffs = torch.abs(topk_deg - src_deg.unsqueeze(1))
#                 closest_idx = torch.argmin(deg_diffs, dim=1)  # (batch_size,)
#                 sampled_negs = topk_idx[
#                     torch.arange(len(A), device="cuda"), closest_idx
#                 ]
#                 neg_edges.append(sampled_negs)
#
#         neg_dsts = torch.cat(neg_edges, dim=0).to("cpu")
#         neg_edge_index = torch.stack([pos_edges[0].cpu(), neg_dsts], dim=0)
#         edge_label_index = torch.cat([pos_edges.cpu(), neg_edge_index], dim=1)
#         edge_label = torch.cat(
#             [split_data.edge_label, torch.zeros(neg_dsts.shape[0])], dim=0
#         )
#         assert edge_label.shape[0] == edge_label_index.shape[1], (
#             "Label and index shape mismatch"
#         )
#         assert len(neg_dsts) == pos_edges.shape[1], (
#             "Expected same amount of positive and negative edges"
#         )
#         return Data(
#             x=split_data.x,
#             edge_index=edge_label,
#             edge_label_index=edge_label_index,
#             edge_label=edge_label,
#         )


if __name__ == "__main__":
    dataset = OGBNLinkPredNegDataset()
    train, val, test = dataset.get_splits()

    def extract_pos_neg_edges(split):
        pos = split.edge_label_index[:, split.edge_label == 1]
        neg = split.edge_label_index[:, split.edge_label == 0]
        return pos, neg

    for name, split in [("train", train), ("val", val), ("test", test)]:
        assert split.edge_label_index.shape[0] == 2, (
            f"{name}: edge_label_index must have 2 rows"
        )
        assert split.edge_label_index.shape[1] == split.edge_label.shape[0], (
            f"{name}: label/index shape mismatch"
        )
        assert torch.all(0 <= split.edge_label) and torch.all(split.edge_label <= 1), (
            f"{name}: labels not 0/1"
        )

        pos, neg = extract_pos_neg_edges(split)
        assert pos.size(1) == neg.size(1), f"{name}: pos/neg count mismatch"

        pos_set = set(tuple(e) for e in pos.t().tolist())
        neg_set = set(tuple(e) for e in neg.t().tolist())
        assert pos_set.isdisjoint(neg_set), f"{name}: pos/neg overlap"

        assert all(u != v for u, v in pos_set), f"{name}: pos self-loops"
        assert all(u != v for u, v in neg_set), f"{name}: neg self-loops"

        assert len(pos_set) == pos.size(1), f"{name}: pos duplicates"
        assert len(neg_set) == neg.size(1), f"{name}: neg duplicates"

        assert pos.size(1) / neg.size(1) == 1.0 if neg.size(1) > 0 else True, (
            f"{name}: ratio not 1.0"
        )

    print("All asserts passed!")