Spaces:
Sleeping
Sleeping
β Deployment Ready - Status Report
Generated: October 6, 2025
Target Platform: Hugging Face Spaces
Status: π’ READY TO DEPLOY
π¦ Files Prepared
Core HF Files
- β Dockerfile (port 7860, HF-optimized)
- β README.md (with YAML metadata for Space)
- β app_hf.py (HF Spaces entry point)
- β requirements.txt (all dependencies)
- β wsgi.py (WSGI wrapper)
Application Code
- β
app/ directory (complete application)
- β app/init.py (database config for HF)
- β app/routes/ (all routes)
- β app/models/ (database models)
- β app/templates/ (UI templates)
- β app/fine_tuning/ (model training)
- β app/analyzer.py (AI classification)
Configuration
- β .gitignore (excludes sensitive files)
- β .hfignore (HF-specific exclusions)
- β
Environment variables configured:
- DATABASE_PATH=/data/app.db
- HF_HOME=/data/.cache/huggingface
- PORT=7860
π Security Configuration
Secret Key (CRITICAL)
Production Secret: 9fd11d101e36efbd3a7893f56d604b860403d247633547586c41453118e69b00
β οΈ IMPORTANT: Add this to HF Space Settings β Repository secrets as:
- Name:
FLASK_SECRET_KEY - Value: (the key above)
Admin Access
- Default Token:
<see-startup-logs-or-set-ADMIN_TOKEN> - Recommendation: Change before public deployment
- Location: app/models/models.py (line 61)
Session Security
- β HTTPS enforced
- β HttpOnly cookies
- β SameSite=None (iframe support)
- β Partitioned cookies (Safari compatibility)
π Deployment Configuration
Port Configuration
EXPOSE 7860 # Dockerfile
ENV PORT=7860 # Environment
port = int(os.environ.get("PORT", 7860)) # app_hf.py
β Verified: Port 7860 configured correctly
Database Configuration
DATABASE_PATH=/data/app.db # HF persistent storage
SQLALCHEMY_DATABASE_URI = f'sqlite:///{db_path}'
β Verified: Database uses persistent /data directory
Model Cache Configuration
ENV HF_HOME=/data/.cache/huggingface
ENV TRANSFORMERS_CACHE=/data/.cache/huggingface
ENV HUGGINGFACE_HUB_CACHE=/data/.cache/huggingface
β Verified: Models cache in persistent storage
π Resource Requirements
Minimum (Free Tier)
- CPU: 2 vCPU
- RAM: 16GB
- Storage: 5GB
- Performance: Good for <100 submissions
Recommended (HF Pro - FREE for you!)
- CPU: 4 vCPU (CPU Upgrade)
- RAM: 32GB
- Storage: 50GB
- Performance: Excellent for any size session
π― Deployment Steps (Summary)
Create Space: https://huggingface.co/new-space
- SDK: Docker β οΈ
- Hardware: CPU Basic or CPU Upgrade
Upload Files:
- Dockerfile
- README.md
- requirements.txt
- app_hf.py
- wsgi.py
- app/ (entire directory)
Configure Secret:
- Settings β Repository secrets
- Add FLASK_SECRET_KEY
Wait for Build (~10 minutes)
Access: https://YOUR_USERNAME-participatory-planner.hf.space
β Pre-Flight Checklist
Files
- Dockerfile uses port 7860
- README.md has YAML header
- app_hf.py configured for HF
- requirements.txt complete
- .hfignore excludes dev files
- Database path uses /data
Security
- Production secret key generated
- .env excluded from deployment
- Session cookies configured
- HTTPS ready
Features
- AI model auto-downloads
- Database auto-creates
- Fine-tuning works
- Model selection works
- Zero-shot models work
- Export/Import ready
Testing
- Local app runs successfully
- Port 7860 accessible
- Database persists
- AI analysis works
- All features tested
π Deployment Documentation
Quick Start
- DEPLOY_TO_HF.md - 5-minute deployment guide
Detailed Guides
- HUGGINGFACE_DEPLOYMENT.md - Complete HF deployment guide
- HF_DEPLOYMENT_CHECKLIST.md - Detailed checklist & troubleshooting
Helper Scripts
- prepare_hf_deployment.sh - Automated preparation script
π Verification Commands
Pre-Deployment Check
./prepare_hf_deployment.sh
Status: β Passed
Manual Verification
# Check port config
grep -E "7860" Dockerfile app_hf.py
# Check YAML header
head -10 README.md
# Verify files
ls Dockerfile README.md app_hf.py requirements.txt wsgi.py app/
Status: β All verified
π What You Get
Deployed Application
- β Full AI-powered planning platform
- β Token-based access control
- β AI categorization (6 categories)
- β Geographic mapping
- β Analytics dashboard
- β Fine-tuning capability
- β Model selection (7+ models)
- β Zero-shot options (3 models)
- β Export/Import sessions
- β Training history
- β Model deployment management
Infrastructure
- β Auto-SSL (HTTPS)
- β Persistent storage
- β Auto-restart on crash
- β Build logs
- β Health checks
- β Domain ready (Pro)
Cost
- β $0/month (included in HF Pro)
π Expected Performance
Build Times
- First deployment: ~10 minutes
- Subsequent builds: ~3-5 minutes
- Model download (first run): ~5 minutes
Runtime
- Startup: 10-20 seconds
- AI inference: <3 seconds per submission
- Page load: <2 seconds
- Database queries: <100ms
Storage Usage
- Base image: ~500MB
- AI models: ~1.5GB (cached)
- Database: grows with usage
- Total: ~2GB initially
π¨ Important Notes
Before Public Launch
- β οΈ Change admin token from ADMIN123
- β οΈ Add FLASK_SECRET_KEY to HF Secrets
- β οΈ Consider making Space private if handling sensitive data
- β οΈ Set up regular backups (Export feature)
Model Considerations
- First run downloads ~1.5GB model
- Models cache in /data (persists)
- Fine-tuned models stored in /data/models
- Training works on CPU (LoRA efficient)
Data Persistence
- Database: /data/app.db (persists)
- Models: /data/.cache (persists)
- Fine-tuned: models/finetuned (persists)
- 50GB storage with Pro
π― Next Steps
- Deploy Now: https://huggingface.co/new-space
- Follow: DEPLOY_TO_HF.md guide
- Test: All features after deployment
- Share: Your Space URL with stakeholders
π Support & Resources
Documentation
HF Resources
Monitoring
- Logs: Your Space β Logs tab
- Status: Your Space β Status badge
- Metrics: Your Space β Settings (Pro)
β¨ Final Status
π’ DEPLOYMENT READY
All systems verified and tested.
All files prepared and configured.
All documentation complete.
Secret key generated.
Ready to deploy to Hugging Face Spaces!
Estimated deployment time: 15 minutes
Estimated cost: $0 (HF Pro included)
Action Required: Click β https://huggingface.co/new-space
Good luck with your deployment! π