File size: 14,098 Bytes
b17b915 793477a b17b915 793477a b17b915 7b5dd83 b17b915 793477a b17b915 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 |
# identity_encoding.py (updated to use libs/*)
# Veureu — Identity Encoder (faces, voices, scenarios)
# -----------------------------------------------------------------------------
# This script replaces the original `identity_encoding.py` but **reuses**
# as much as possible the functions already present in `libs/`.
# It respects the project's path structure (identities/*, scenarios, chroma_db,
# results) and maintains the classic pipeline:
# 1) index_faces (ChromaDB)
# 2) identity_features.csv
# 3) index_voices (ChromaDB)
# 4) scenarios_descriptions.csv
# 5) index_scenarios (ChromaDB)
# -----------------------------------------------------------------------------
from __future__ import annotations
import argparse
import csv
import logging
import sys
import uuid
from dataclasses import dataclass
from pathlib import Path
from typing import Any, Dict, Iterable, List, Optional, Tuple
# ============================ LOGGING ========================================
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
log = logging.getLogger("identity_encoding")
# ============================ DEPENDENCIES ===================================
# ChromaDB (persistente)
try:
import chromadb
except Exception as e:
chromadb = None # type: ignore
log.error("No se pudo importar chromadb: %s", e)
from vision_tools import FaceAnalyzer
from collections import Counter
# Audio: reuse get_embedding from the existing pipeline
from audio_tools import VoiceEmbedder
from vision_tools import FaceOfImageEmbedding
# Optional
try:
import numpy as np
except Exception:
np = None # type: ignore
# ============================ UTILITIES =====================================
IMG_EXT = {".jpg", ".jpeg", ".png", ".bmp", ".webp"}
AUD_EXT = {".wav", ".mp3", ".flac", ".m4a", ".ogg"}
def list_files(root: Path, exts: Iterable[str]) -> List[Path]:
root = Path(root)
if not root.exists():
return []
return [p for p in root.rglob('*') if p.suffix.lower() in exts]
def ensure_chroma(db_dir: Path):
if chromadb is None:
raise RuntimeError("chromadb no instalado. pip install chromadb")
db_dir.mkdir(parents=True, exist_ok=True)
# Nueva API (>=0.5): cliente persistente directo
client = chromadb.PersistentClient(path=str(db_dir))
return client
# ============================ 1) INDEX FACES =================================
def build_faces_index(faces_dir: Path, client, collection_name: str = "index_faces",
deepface_model: str = 'Facenet512', drop: bool = True) -> int:
# idempotency
if collection_name in [c.name for c in client.list_collections()] and drop:
client.delete_collection(name=collection_name)
col = client.get_or_create_collection(name=collection_name)
be = FaceOfImageEmbedding(deepface_model=deepface_model)
count = 0
registered_identities = set() # 👈 para no repetir nombres
for ident_dir in sorted(Path(faces_dir).iterdir() if Path(faces_dir).exists() else []):
if not ident_dir.is_dir():
continue
ident = ident_dir.name
for img_path in list_files(ident_dir, IMG_EXT):
embeddings = be.encode_image(img_path)
if embeddings is None:
log.warning("No face embedding in %s", img_path)
continue
# Aplanar para que cada embedding sea una lista de floats
for e in (embeddings if isinstance(embeddings[0], list) else [embeddings]):
uid = str(uuid.uuid4())
col.add(ids=[uid], embeddings=[e], metadatas=[{"identity": ident, "path": str(img_path)}])
count += 1
registered_identities.add(ident) # 👈 guardamos el nombre
# Mensajes finales
print("Ha acabado de crear la base de datos.")
print(f"Total de embeddings guardados: {count}")
print("Identidades registradas:")
for name in sorted(registered_identities):
print(f" - {name}")
log.info("index_faces => %d embeddings", count)
return count
# ===================== 2) IDENTITY FEATURES CSV ==============================
def aggregate_face_attributes(faces_dir: Path, out_csv: Path) -> int:
"""
Procesa un directorio de caras por identidad y genera un CSV con edad y género.
Usa FaceAnalyzer para extraer atributos.
"""
# Inicializa el analizador
# FaceAnalyzer already imported at module level
analyzer = FaceAnalyzer()
rows: List[Dict[str, Any]] = []
faces_dir = Path(faces_dir)
if not faces_dir.exists() or not faces_dir.is_dir():
log.error("El directorio de caras no existe: %s", faces_dir)
return 0
def most_common(lst, default="unknown"):
return Counter(lst).most_common(1)[0][0] if lst else default
# Itera sobre cada identidad
for ident_dir in sorted(faces_dir.iterdir()):
if not ident_dir.is_dir():
continue
ident = ident_dir.name
attrs: List[Dict[str, Any]] = []
log.info("Procesando identidad: %s", ident)
for img_path in sorted(list_files(ident_dir, IMG_EXT)):
try:
data = analyzer.analyze_image(str(img_path))
if data:
attrs.append(data)
except Exception as e:
log.warning("Error procesando imagen %s: %s", img_path, e)
genders = [a.get("gender", "unknown") for a in attrs]
ages = [a.get("age", "unknown") for a in attrs]
# Contexto opcional por identidad
context_txt = (faces_dir.parent / "context" / f"{ident}.txt")
identity_context = context_txt.read_text(encoding="utf-8").strip() if context_txt.exists() else ""
rows.append({
"identity": ident,
"samples": len(attrs),
"gender": most_common(genders),
"age_bucket": most_common(ages),
"identity_context": identity_context,
})
log.info("Procesados %d atributos para %s", len(attrs), ident)
# Guardar CSV
out_csv.parent.mkdir(parents=True, exist_ok=True)
with out_csv.open("w", newline='', encoding="utf-8") as f:
fieldnames = list(rows[0].keys()) if rows else ["identity", "identity_context"]
writer = csv.DictWriter(f, fieldnames=fieldnames)
writer.writeheader()
writer.writerows(rows)
log.info("CSV generado correctamente: %s", out_csv)
return len(rows)
# ============================ 3) INDEX VOICES =================================
from pydub import AudioSegment # agregar al inicio de tu archivo junto a otros imports
def build_voices_index(voices_dir: Path, client, collection_name: str = "index_voices", drop: bool = True) -> int:
if collection_name in [c.name for c in client.list_collections()] and drop:
client.delete_collection(name=collection_name)
col = client.get_or_create_collection(name=collection_name)
ve = VoiceEmbedder()
count = 0
for ident_dir in sorted(Path(voices_dir).iterdir() if Path(voices_dir).exists() else []):
if not ident_dir.is_dir():
continue
ident = ident_dir.name
for wav_path in list_files(ident_dir, AUD_EXT):
# Intentar embed directamente
try:
emb = ve.embed(wav_path)
except Exception as e:
log.warning("Error leyendo audio %s: %s. Intentando reconvertir...", wav_path, e)
# Reconversión automática a WAV PCM
try:
audio = AudioSegment.from_file(wav_path)
fixed_path = wav_path.with_name(wav_path.stem + "_fixed.wav")
audio.export(fixed_path, format="wav")
log.info("Archivo convertido a WAV compatible: %s", fixed_path)
emb = ve.embed(fixed_path)
except Exception as e2:
log.error("No se pudo generar embedding tras reconversión para %s: %s", wav_path, e2)
continue # saltar este archivo
if emb is None:
log.warning("No voice embedding en %s", wav_path)
continue
uid = str(uuid.uuid4())
col.add(ids=[uid], embeddings=[emb], metadatas=[{"identity": ident, "path": str(wav_path)}])
count += 1
log.info("index_voices => %d embeddings", count)
return count
# ============================ 4) SCENARIOS ==================================
@dataclass
class VisionClient:
provider: str = "none" # placeholder to plug in an LLM if desired
def describe(self, image_path: str, prompt: str) -> str:
return (f"Automatic description (placeholder) for {Path(image_path).name}. "
f"{prompt}")
class TextEmbedder:
"""Text embeddings with Sentence-Transformers if available; fallback to TF-IDF."""
def __init__(self, model_name: str = "all-MiniLM-L6-v2"):
self.kind = "tfidf"; self.model = None; self.vectorizer = None
try:
from sentence_transformers import SentenceTransformer
self.model = SentenceTransformer(model_name)
self.kind = "sbert"
except Exception:
from sklearn.feature_extraction.text import TfidfVectorizer
self.vectorizer = TfidfVectorizer(max_features=768)
def fit(self, texts: List[str]):
if self.vectorizer is not None:
self.vectorizer.fit(texts)
def encode(self, texts: List[str]) -> List[List[float]]:
if self.model is not None:
arr = self.model.encode(texts, convert_to_numpy=True)
return arr.astype(float).tolist()
X = self.vectorizer.transform(texts) if self.vectorizer is not None else None
return (X.toarray().astype(float).tolist() if X is not None else [[0.0]*128 for _ in texts])
def build_scenarios_descriptions(scenarios_dir: Path, out_csv: Path, vision: VisionClient,
sample_per_scenario: int = 12) -> Tuple[int, List[Dict[str, Any]]]:
rows: List[Dict[str, Any]] = []
for scen_dir in sorted(Path(scenarios_dir).iterdir() if Path(scenarios_dir).exists() else []):
if not scen_dir.is_dir():
continue
scen = scen_dir.name
descs: List[str] = []
imgs = list_files(scen_dir, IMG_EXT)[:sample_per_scenario]
for img in imgs:
d = vision.describe(str(img), prompt="Describe location, time period, lighting, and atmosphere without mentioning people or time of day.")
if d:
descs.append(d)
if not descs:
descs = [f"Scenario {scen} (no images)"]
rows.append({"scenario": scen, "descriptions": " \n".join(descs)})
out_csv.parent.mkdir(parents=True, exist_ok=True)
with out_csv.open("w", newline='', encoding="utf-8") as f:
w = csv.DictWriter(f, fieldnames=["scenario", "descriptions"])
w.writeheader(); w.writerows(rows)
log.info("scenarios_descriptions => %s", out_csv)
return len(rows), rows
def build_scenarios_index(client, rows: List[Dict[str, Any]], embedder: TextEmbedder,
collection_name: str = "index_scenarios", drop: bool = True) -> int:
texts = [r["descriptions"] for r in rows]
embedder.fit(texts)
embs = embedder.encode(texts)
if collection_name in [c.name for c in client.list_collections()] and drop:
client.delete_collection(name=collection_name)
col = client.get_or_create_collection(name=collection_name)
for r, e in zip(rows, embs):
col.add(ids=[r["scenario"]], embeddings=[e], metadatas=[{"scenario": r["scenario"]}])
log.info("index_scenarios => %d descriptions", len(rows))
return len(rows)
# ================================ CLI ========================================
def main():
ap = argparse.ArgumentParser(description="Veureu — Build identity/scenario indices and CSVs")
ap.add_argument('--faces_dir', default='identities/faces', help='Root directory of face images per identity')
ap.add_argument('--voices_dir', default='identities/voices', help='Root directory of voice clips per identity')
ap.add_argument('--scenarios_dir', default='scenarios', help='Root directory of scenario folders with images')
ap.add_argument('--db_dir', default='chroma_db', help='ChromaDB persistence directory')
ap.add_argument('--out_dir', default='results', help='Output directory for CSVs')
ap.add_argument('--drop_collections', action='store_true', help='Delete collections if they exist before rebuilding')
ap.add_argument('--deepface_model', default='Facenet512', help='DeepFace model to use as fallback')
ap.add_argument('--scenario_samples', type=int, default=12, help='Number of images per scenario to describe')
args = ap.parse_args()
faces_dir = Path(args.faces_dir)
voices_dir = Path(args.voices_dir)
print(voices_dir)
scenarios_dir = Path(args.scenarios_dir)
out_dir = Path(args.out_dir); out_dir.mkdir(parents=True, exist_ok=True)
client = ensure_chroma(Path(args.db_dir))
# 1) Faces index
build_faces_index(faces_dir, client, collection_name="index_faces", deepface_model=args.deepface_model, drop=args.drop_collections)
# 2) Identity features CSV
#id_csv = out_dir / 'identity_features.csv'
#aggregate_face_attributes(faces_dir, id_csv)
# 3) Voices index
build_voices_index(voices_dir, client, collection_name="index_voices", drop=args.drop_collections)
# 4) Scenarios descriptions
#vision = VisionClient()
#scen_csv = out_dir / 'scenarios_descriptions.csv'
#_, scen_rows = build_scenarios_descriptions(scenarios_dir, scen_csv, vision, sample_per_scenario=args.scenario_samples)
# 5) Scenarios index
#embedder = TextEmbedder()
#build_scenarios_index(client, scen_rows, embedder, collection_name="index_scenarios", drop=args.drop_collections)
log.info("✅ Identity encoding completed.")
if __name__ == '__main__' and '--video' not in sys.argv:
main()
|