File size: 14,098 Bytes
b17b915
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
793477a
b17b915
 
 
793477a
 
b17b915
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b5dd83
 
b17b915
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
793477a
b17b915
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
# identity_encoding.py (updated to use libs/*)
# Veureu — Identity Encoder (faces, voices, scenarios)
# -----------------------------------------------------------------------------
# This script replaces the original `identity_encoding.py` but **reuses**
# as much as possible the functions already present in `libs/`.
# It respects the project's path structure (identities/*, scenarios, chroma_db,
# results) and maintains the classic pipeline:
#   1) index_faces (ChromaDB)
#   2) identity_features.csv
#   3) index_voices (ChromaDB)
#   4) scenarios_descriptions.csv
#   5) index_scenarios (ChromaDB)
# -----------------------------------------------------------------------------
from __future__ import annotations
import argparse
import csv
import logging
import sys
import uuid
from dataclasses import dataclass
from pathlib import Path
from typing import Any, Dict, Iterable, List, Optional, Tuple

# ============================ LOGGING ========================================
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
log = logging.getLogger("identity_encoding")

# ============================ DEPENDENCIES ===================================
# ChromaDB (persistente)
try:
    import chromadb
except Exception as e:
    chromadb = None  # type: ignore
    log.error("No se pudo importar chromadb: %s", e)

from vision_tools import FaceAnalyzer
from collections import Counter

# Audio: reuse get_embedding from the existing pipeline
from audio_tools import VoiceEmbedder
from vision_tools import FaceOfImageEmbedding

# Optional
try:
    import numpy as np
except Exception:
    np = None  # type: ignore

# ============================ UTILITIES =====================================
IMG_EXT = {".jpg", ".jpeg", ".png", ".bmp", ".webp"}
AUD_EXT = {".wav", ".mp3", ".flac", ".m4a", ".ogg"}


def list_files(root: Path, exts: Iterable[str]) -> List[Path]:
    root = Path(root)
    if not root.exists():
        return []
    return [p for p in root.rglob('*') if p.suffix.lower() in exts]


def ensure_chroma(db_dir: Path):
    if chromadb is None:
        raise RuntimeError("chromadb no instalado. pip install chromadb")
    db_dir.mkdir(parents=True, exist_ok=True)
    # Nueva API (>=0.5): cliente persistente directo
    client = chromadb.PersistentClient(path=str(db_dir))
    return client

# ============================ 1) INDEX FACES =================================
def build_faces_index(faces_dir: Path, client, collection_name: str = "index_faces",
                      deepface_model: str = 'Facenet512', drop: bool = True) -> int:
    # idempotency
    if collection_name in [c.name for c in client.list_collections()] and drop:
        client.delete_collection(name=collection_name)
    col = client.get_or_create_collection(name=collection_name)

    be = FaceOfImageEmbedding(deepface_model=deepface_model)
    count = 0
    registered_identities = set()  # 👈 para no repetir nombres

    for ident_dir in sorted(Path(faces_dir).iterdir() if Path(faces_dir).exists() else []):
        if not ident_dir.is_dir():
            continue
        ident = ident_dir.name
        for img_path in list_files(ident_dir, IMG_EXT):
            embeddings = be.encode_image(img_path)
            if embeddings is None:
                log.warning("No face embedding in %s", img_path)
                continue

            # Aplanar para que cada embedding sea una lista de floats
            for e in (embeddings if isinstance(embeddings[0], list) else [embeddings]):
                uid = str(uuid.uuid4())
                col.add(ids=[uid], embeddings=[e], metadatas=[{"identity": ident, "path": str(img_path)}])
                count += 1
                registered_identities.add(ident)  # 👈 guardamos el nombre

    # Mensajes finales
    print("Ha acabado de crear la base de datos.")
    print(f"Total de embeddings guardados: {count}")
    print("Identidades registradas:")
    for name in sorted(registered_identities):
        print(f" - {name}")

    log.info("index_faces => %d embeddings", count)
    return count

# ===================== 2) IDENTITY FEATURES CSV ==============================

def aggregate_face_attributes(faces_dir: Path, out_csv: Path) -> int:
    """
    Procesa un directorio de caras por identidad y genera un CSV con edad y género.
    Usa FaceAnalyzer para extraer atributos.
    """
    # Inicializa el analizador
    # FaceAnalyzer already imported at module level
    analyzer = FaceAnalyzer()

    rows: List[Dict[str, Any]] = []

    faces_dir = Path(faces_dir)
    if not faces_dir.exists() or not faces_dir.is_dir():
        log.error("El directorio de caras no existe: %s", faces_dir)
        return 0

    def most_common(lst, default="unknown"):
        return Counter(lst).most_common(1)[0][0] if lst else default

    # Itera sobre cada identidad
    for ident_dir in sorted(faces_dir.iterdir()):
        if not ident_dir.is_dir():
            continue
        ident = ident_dir.name
        attrs: List[Dict[str, Any]] = []

        log.info("Procesando identidad: %s", ident)

        for img_path in sorted(list_files(ident_dir, IMG_EXT)):
            try:
                data = analyzer.analyze_image(str(img_path))
                if data:
                    attrs.append(data)
            except Exception as e:
                log.warning("Error procesando imagen %s: %s", img_path, e)

        genders = [a.get("gender", "unknown") for a in attrs]
        ages = [a.get("age", "unknown") for a in attrs]

        # Contexto opcional por identidad
        context_txt = (faces_dir.parent / "context" / f"{ident}.txt")
        identity_context = context_txt.read_text(encoding="utf-8").strip() if context_txt.exists() else ""

        rows.append({
            "identity": ident,
            "samples": len(attrs),
            "gender": most_common(genders),
            "age_bucket": most_common(ages),
            "identity_context": identity_context,
        })

        log.info("Procesados %d atributos para %s", len(attrs), ident)

    # Guardar CSV
    out_csv.parent.mkdir(parents=True, exist_ok=True)
    with out_csv.open("w", newline='', encoding="utf-8") as f:
        fieldnames = list(rows[0].keys()) if rows else ["identity", "identity_context"]
        writer = csv.DictWriter(f, fieldnames=fieldnames)
        writer.writeheader()
        writer.writerows(rows)

    log.info("CSV generado correctamente: %s", out_csv)
    return len(rows)

# ============================ 3) INDEX VOICES =================================
from pydub import AudioSegment  # agregar al inicio de tu archivo junto a otros imports

def build_voices_index(voices_dir: Path, client, collection_name: str = "index_voices", drop: bool = True) -> int:
    if collection_name in [c.name for c in client.list_collections()] and drop:
        client.delete_collection(name=collection_name)
    col = client.get_or_create_collection(name=collection_name)

    ve = VoiceEmbedder()
    count = 0

    for ident_dir in sorted(Path(voices_dir).iterdir() if Path(voices_dir).exists() else []):
        if not ident_dir.is_dir():
            continue
        ident = ident_dir.name
        for wav_path in list_files(ident_dir, AUD_EXT):
            # Intentar embed directamente
            try:
                emb = ve.embed(wav_path)
            except Exception as e:
                log.warning("Error leyendo audio %s: %s. Intentando reconvertir...", wav_path, e)
                # Reconversión automática a WAV PCM
                try:
                    audio = AudioSegment.from_file(wav_path)
                    fixed_path = wav_path.with_name(wav_path.stem + "_fixed.wav")
                    audio.export(fixed_path, format="wav")
                    log.info("Archivo convertido a WAV compatible: %s", fixed_path)
                    emb = ve.embed(fixed_path)
                except Exception as e2:
                    log.error("No se pudo generar embedding tras reconversión para %s: %s", wav_path, e2)
                    continue  # saltar este archivo
            if emb is None:
                log.warning("No voice embedding en %s", wav_path)
                continue
            uid = str(uuid.uuid4())
            col.add(ids=[uid], embeddings=[emb], metadatas=[{"identity": ident, "path": str(wav_path)}])
            count += 1

    log.info("index_voices => %d embeddings", count)
    return count

# ============================ 4) SCENARIOS ==================================
@dataclass
class VisionClient:
    provider: str = "none"  # placeholder to plug in an LLM if desired

    def describe(self, image_path: str, prompt: str) -> str:
        return (f"Automatic description (placeholder) for {Path(image_path).name}. "
                f"{prompt}")


class TextEmbedder:
    """Text embeddings with Sentence-Transformers if available; fallback to TF-IDF."""
    def __init__(self, model_name: str = "all-MiniLM-L6-v2"):
        self.kind = "tfidf"; self.model = None; self.vectorizer = None
        try:
            from sentence_transformers import SentenceTransformer
            self.model = SentenceTransformer(model_name)
            self.kind = "sbert"
        except Exception:
            from sklearn.feature_extraction.text import TfidfVectorizer
            self.vectorizer = TfidfVectorizer(max_features=768)

    def fit(self, texts: List[str]):
        if self.vectorizer is not None:
            self.vectorizer.fit(texts)

    def encode(self, texts: List[str]) -> List[List[float]]:
        if self.model is not None:
            arr = self.model.encode(texts, convert_to_numpy=True)
            return arr.astype(float).tolist()
        X = self.vectorizer.transform(texts) if self.vectorizer is not None else None
        return (X.toarray().astype(float).tolist() if X is not None else [[0.0]*128 for _ in texts])


def build_scenarios_descriptions(scenarios_dir: Path, out_csv: Path, vision: VisionClient,
                                 sample_per_scenario: int = 12) -> Tuple[int, List[Dict[str, Any]]]:
    rows: List[Dict[str, Any]] = []
    for scen_dir in sorted(Path(scenarios_dir).iterdir() if Path(scenarios_dir).exists() else []):
        if not scen_dir.is_dir():
            continue
        scen = scen_dir.name
        descs: List[str] = []
        imgs = list_files(scen_dir, IMG_EXT)[:sample_per_scenario]
        for img in imgs:
            d = vision.describe(str(img), prompt="Describe location, time period, lighting, and atmosphere without mentioning people or time of day.")
            if d:
                descs.append(d)
        if not descs:
            descs = [f"Scenario {scen} (no images)"]
        rows.append({"scenario": scen, "descriptions": " \n".join(descs)})

    out_csv.parent.mkdir(parents=True, exist_ok=True)
    with out_csv.open("w", newline='', encoding="utf-8") as f:
        w = csv.DictWriter(f, fieldnames=["scenario", "descriptions"])
        w.writeheader(); w.writerows(rows)
    log.info("scenarios_descriptions => %s", out_csv)
    return len(rows), rows


def build_scenarios_index(client, rows: List[Dict[str, Any]], embedder: TextEmbedder,
                           collection_name: str = "index_scenarios", drop: bool = True) -> int:
    texts = [r["descriptions"] for r in rows]
    embedder.fit(texts)
    embs = embedder.encode(texts)

    if collection_name in [c.name for c in client.list_collections()] and drop:
        client.delete_collection(name=collection_name)
    col = client.get_or_create_collection(name=collection_name)

    for r, e in zip(rows, embs):
        col.add(ids=[r["scenario"]], embeddings=[e], metadatas=[{"scenario": r["scenario"]}])
    log.info("index_scenarios => %d descriptions", len(rows))
    return len(rows)

# ================================ CLI ========================================

def main():
    ap = argparse.ArgumentParser(description="Veureu — Build identity/scenario indices and CSVs")
    ap.add_argument('--faces_dir', default='identities/faces', help='Root directory of face images per identity')
    ap.add_argument('--voices_dir', default='identities/voices', help='Root directory of voice clips per identity')
    ap.add_argument('--scenarios_dir', default='scenarios', help='Root directory of scenario folders with images')
    ap.add_argument('--db_dir', default='chroma_db', help='ChromaDB persistence directory')
    ap.add_argument('--out_dir', default='results', help='Output directory for CSVs')
    ap.add_argument('--drop_collections', action='store_true', help='Delete collections if they exist before rebuilding')
    ap.add_argument('--deepface_model', default='Facenet512', help='DeepFace model to use as fallback')
    ap.add_argument('--scenario_samples', type=int, default=12, help='Number of images per scenario to describe')

    args = ap.parse_args()

    faces_dir = Path(args.faces_dir)
    voices_dir = Path(args.voices_dir)
    print(voices_dir)
    scenarios_dir = Path(args.scenarios_dir)
    out_dir = Path(args.out_dir); out_dir.mkdir(parents=True, exist_ok=True)

    client = ensure_chroma(Path(args.db_dir))

    # 1) Faces index
    build_faces_index(faces_dir, client, collection_name="index_faces", deepface_model=args.deepface_model, drop=args.drop_collections)

    # 2) Identity features CSV
    #id_csv = out_dir / 'identity_features.csv'
    #aggregate_face_attributes(faces_dir, id_csv)

    # 3) Voices index
    build_voices_index(voices_dir, client, collection_name="index_voices", drop=args.drop_collections)

    # 4) Scenarios descriptions
    #vision = VisionClient()
    #scen_csv = out_dir / 'scenarios_descriptions.csv'
    #_, scen_rows = build_scenarios_descriptions(scenarios_dir, scen_csv, vision, sample_per_scenario=args.scenario_samples)

    # 5) Scenarios index
    #embedder = TextEmbedder()
    #build_scenarios_index(client, scen_rows, embedder, collection_name="index_scenarios", drop=args.drop_collections)

    log.info("✅ Identity encoding completed.")


if __name__ == '__main__' and '--video' not in sys.argv:
    main()