Spaces:
Sleeping
Sleeping
File size: 14,472 Bytes
d9223ba 5cbaa03 bf2f4a4 5cbaa03 d9223ba 5cbaa03 d9223ba e2a9e36 d9223ba e2a9e36 d9223ba e2a9e36 d9223ba e2a9e36 d9223ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 |
import os
import torch
import numpy as np
import json
import time
import io
import zipfile
from PIL import Image, ImageDraw, ImageFont
from transformers import AutoProcessor, AutoModelForVision2Seq
import streamlit as st
import re
# Constants
MODEL_ID = "Qwen/Qwen3-VL-4B-Instruct"
@st.cache_resource
def load_model():
"""
Loads the Qwen-VL model and processor.
"""
print(f"Loading model: {MODEL_ID}...")
try:
device_type = "cuda" if torch.cuda.is_available() else "cpu"
# Use bfloat16 for CPU to save memory (4B params * 4 bytes is too big for 16GB)
torch_dtype = torch.float16 if device_type == "cuda" else torch.bfloat16
print(f"Using device: {device_type}, dtype: {torch_dtype}")
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
model = AutoModelForVision2Seq.from_pretrained(
MODEL_ID,
device_map="auto",
trust_remote_code=True,
torch_dtype=torch_dtype
)
except Exception as e:
print(f"Error loading {MODEL_ID}: {e}")
st.error(f"Could not load model {MODEL_ID}. Error: {e}")
return None, None
return processor, model
def get_bounding_boxes(image: Image.Image, prompt: str, history: list, processor, model):
"""
Generates bounding boxes based on the image, prompt, and conversation history.
"""
start_time = time.time()
if model is None or processor is None:
return [], history, "Model not loaded.", {}
# Construct conversation
messages = []
# Context
context_text = ""
if history:
context_text = "History:\n"
for msg in history:
role = "User" if msg['role'] == 'user' else "Assistant"
context_text += f"{role}: {msg['content']}\n"
context_text += "\n"
# Enhanced Prompt: JSON Focused With Reasoning
final_prompt = f"{context_text}User Request: {prompt}\n\nTask: Detect objects mentioned in the User Request.\nConstraint: Return the result ONLY as a JSON object with a key 'objects'.\nEach object in the list should have 'label', 'bbox' [x1, y1, x2, y2] (common normalized coordinates 0-1000), AND 'reasoning' (a brief string explaining why this object matches).\nExample: {{'objects': [{{'label': 'cat', 'bbox': [100, 200, 500, 600], 'reasoning': 'Detected distinct feline features and whiskers.'}}]}}\nIf no objects are found, return {{'objects': []}}."
messages = [
{
"role": "system",
"content": "You are a precise object detection assistant. Return JSON with 'objects' list containing 'label', 'bbox' [x1, y1, x2, y2] (common normalized coordinates 0-1000), and 'reasoning'."
},
{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": final_prompt}
]
}
]
# Process inputs
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(messages)
try:
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to(model.device)
# Generate (Measured)
generate_start = time.time()
generated_ids = model.generate(**inputs, max_new_tokens=512)
generate_end = time.time()
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)[0]
except Exception as e:
print(f"Inference Error: {e}")
output_text = f"Error: {e}"
generate_end = time.time()
# Update history
history.append({"role": "user", "content": prompt})
history.append({"role": "assistant", "content": output_text})
# Parse detections
detections = parse_qwen_output(output_text, image.width, image.height)
# Filter
filtered_detections = []
total_area = image.width * image.height
for det in detections:
x1, y1, x2, y2 = det['box']
box_area = (x2 - x1) * (y2 - y1)
coverage = box_area / total_area
is_suspicious_coverage = coverage > 0.95
is_whole_request = any(w in prompt.lower() for w in ["image", "picture", "photo", "background", "everything"])
if is_suspicious_coverage and not is_whole_request:
continue
filtered_detections.append(det)
# Metrics
end_time = time.time()
total_time = end_time - start_time
inference_time = generate_end - generate_start
metrics = {
"total_time": round(total_time, 2),
"inference_time": round(inference_time, 2),
"token_count": len(generated_ids[0]) if 'generated_ids' in locals() else 0
}
return filtered_detections, history, output_text, metrics
def smart_merge_detections(existing_detections, new_detections):
"""
Merges new detections with existing ones.
Strategy: SIMPLE OVERLAP ONLY.
If IoU > 0.8 -> Assume duplicate/refinement -> Replace.
Else -> Keep.
"""
merged_list = existing_detections.copy()
for new_det in new_detections:
new_box = new_det['box']
indices_to_remove = []
for i, old_det in enumerate(merged_list):
old_box = old_det['box']
iou = calculate_iou(new_box, old_box)
# Simple threshold check
if iou > 0.8:
indices_to_remove.append(i)
for idx in sorted(indices_to_remove, reverse=True):
merged_list.pop(idx)
merged_list.append(new_det)
return merged_list
def calculate_iou(boxA, boxB):
xA = max(boxA[0], boxB[0])
yA = max(boxA[1], boxB[1])
xB = min(boxA[2], boxB[2])
yB = min(boxA[3], boxB[3])
interArea = max(0, xB - xA) * max(0, yB - yA)
boxAArea = (boxA[2] - boxA[0]) * (boxA[3] - boxA[1])
boxBArea = (boxB[2] - boxB[0]) * (boxB[3] - boxB[1])
iou = interArea / float(boxAArea + boxBArea - interArea + 1e-6)
return iou
def parse_qwen_output(text, width, height):
"""
Parses Qwen-VL output, prioritizing JSON with reasoning.
"""
detections = []
# 1. Try JSON Parsing (Primary Strategy)
try:
match = re.search(r'\{.*\}', text, re.DOTALL)
if match:
json_str = match.group()
data = json.loads(json_str)
if 'objects' in data and isinstance(data['objects'], list):
for obj in data['objects']:
x1, y1, x2, y2 = obj['bbox']
label = obj.get('label', 'Object')
reasoning = obj.get('reasoning', 'No reasoning provided')
real_x1 = (x1 / 1000) * width
real_y1 = (y1 / 1000) * height
real_x2 = (x2 / 1000) * width
real_y2 = (y2 / 1000) * height
detections.append({
"label": label,
"box": [real_x1, real_y1, real_x2, real_y2],
"score": 1.0,
"reasoning": reasoning
})
except Exception as e:
print(f"JSON Parse Error: {e}")
pass
# 2. Fallback to Standard Tags
if not detections:
pattern_standard = r"<\|box_start\|>(\d+),(\d+),(\d+),(\d+)<\|box_end\|>(?:<\|object_start\|>(.*?)<\|object_end\|>)?"
matches_standard = list(re.finditer(pattern_standard, text))
for match in matches_standard:
c1, c2, c3, c4 = map(int, match.groups()[:4])
label = match.group(5) if match.group(5) else "Object"
y1 = (c1 / 1000) * height
x1 = (c2 / 1000) * width
y2 = (c3 / 1000) * height
x2 = (c4 / 1000) * width
detections.append({
"label": label,
"box": [x1, y1, x2, y2],
"score": 1.0,
"reasoning": "Legacy detection mode"
})
return detections
def create_crops_zip(image: Image.Image, detections: list):
"""
Creates a ZIP file containing cropped images of all detections.
"""
zip_buffer = io.BytesIO()
# Ensure distinct filenames
counts = {}
with zipfile.ZipFile(zip_buffer, "w", zipfile.ZIP_DEFLATED) as zip_file:
for i, det in enumerate(detections):
label = det.get('label', 'object').replace(" ", "_").lower()
if label not in counts:
counts[label] = 1
else:
counts[label] += 1
label = f"{label}_{counts[label]}"
x1, y1, x2, y2 = map(int, det['box'])
x1 = max(0, x1)
y1 = max(0, y1)
x2 = min(image.width, x2)
y2 = min(image.height, y2)
if x2 > x1 and y2 > y1:
crop = image.crop((x1, y1, x2, y2))
crop_buffer = io.BytesIO()
crop.save(crop_buffer, format="JPEG")
zip_file.writestr(f"{label}.jpg", crop_buffer.getvalue())
zip_buffer.seek(0)
return zip_buffer
def process_vision_info(messages):
try:
from qwen_vl_utils import process_vision_info
return process_vision_info(messages)
except ImportError:
images = []
for msg in messages:
for item in msg["content"]:
if item["type"] == "image":
images.append(item["image"])
return images, None
def draw_boxes(image: Image.Image, detections: list):
"""
Draws bounding boxes with dynamic font scaling.
"""
draw = ImageDraw.Draw(image)
# Dynamic Scaling (UPDATED FOR BETTER VISIBILITY)
min_dim = min(image.width, image.height)
scaled_font_size = max(20, int(min_dim * 0.035))
scaled_line_width = max(4, int(min_dim * 0.006))
font = None
try:
# Search paths for fonts (Linux/Windows)
font_paths = [
# Windows
"arial.ttf", "calibri.ttf", "seguiemj.ttf",
# Linux (Standard)
"/usr/share/fonts/truetype/liberation/LiberationSans-Regular.ttf",
"/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf",
"LiberationSans-Regular.ttf",
"DejaVuSans.ttf"
]
for fn in font_paths:
try:
font = ImageFont.truetype(fn, scaled_font_size)
print(f"Loaded font: {fn}")
break
except Exception as e:
continue
except:
pass
if font is None:
try:
print("Fallback to default font (Warning: Text may be tiny)")
font = ImageFont.load_default()
except:
pass
palette = [
"#FF00FF", "#00FFFF", "#FF0000", "#00FF00",
"#FFFF00", "#FFA500", "#800080", "#008080"
]
def get_color(text):
if not text: return palette[0]
idx = sum(ord(c) for c in text) % len(palette)
return palette[idx]
for det in detections:
box = det['box']
label = det.get('label', 'Object')
score_val = det.get('score', 1.0)
display_text = f"{label} {int(score_val*100)}%"
color = get_color(label)
x1, y1, x2, y2 = box
draw.rectangle([x1, y1, x2, y2], outline=color, width=scaled_line_width)
# Text box
if font:
text_bbox = draw.textbbox((x1, y1), display_text, font=font)
text_width = text_bbox[2] - text_bbox[0]
text_height = text_bbox[3] - text_bbox[1]
label_y = y1 - text_height - (scaled_line_width * 2)
if label_y < 0: label_y = y1
draw.rectangle(
[x1, label_y, x1 + text_width + (scaled_line_width * 4), label_y + text_height + (scaled_line_width * 2)],
fill=color
)
draw.text((x1 + (scaled_line_width), label_y), display_text, fill="black", font=font)
return image
def convert_to_coco(detections, image_size=(1000, 1000), filename="image.jpg"):
"""
Converts detections to full Standard COCO JSON format.
"""
width, height = image_size
# 1. Info
info = {
"year": 2025,
"version": "1.0",
"description": "Generated by Annotation Assistant (Qwen-VL)",
"date_created": time.strftime("%Y-%m-%d")
}
# 2. Images
images = [{
"id": 1,
"width": width,
"height": height,
"file_name": filename,
"license": 0,
"flickr_url": "",
"coco_url": "",
"date_captured": 0
}]
# 3. Categories & Annotations
categories = []
category_map = {}
annotations = []
cat_id_counter = 1
for i, det in enumerate(detections):
label = det.get('label', 'object')
# Manage Categories
if label not in category_map:
category_map[label] = cat_id_counter
categories.append({
"id": cat_id_counter,
"name": label,
"supercategory": "object"
})
cat_id_counter += 1
x1, y1, x2, y2 = det['box']
w = x2 - x1
h = y2 - y1
ann = {
"id": i + 1,
"image_id": 1,
"category_id": category_map[label],
"bbox": [round(x1, 2), round(y1, 2), round(w, 2), round(h, 2)],
"area": round(w * h, 2),
"iscrowd": 0,
"attributes": {
"reasoning": det.get('reasoning', '')
}
}
annotations.append(ann)
coco_output = {
"info": info,
"images": images,
"annotations": annotations,
"categories": categories,
"licenses": []
}
return json.dumps(coco_output, indent=2)
|