Spaces:
Running
Running
GSK-2498-suggest-a-dataset-for-model
#46
by
ZeroCommand
- opened
- app_leaderboard.py +4 -1
- app_text_classification.py +43 -12
- leaderboard.py +3 -0
- text_classification_ui_helpers.py +13 -3
app_leaderboard.py
CHANGED
|
@@ -7,6 +7,7 @@ from fetch_utils import (check_dataset_and_get_config,
|
|
| 7 |
check_dataset_and_get_split)
|
| 8 |
from text_classification_ui_helpers import LEADERBOARD
|
| 9 |
|
|
|
|
| 10 |
|
| 11 |
def get_records_from_dataset_repo(dataset_id):
|
| 12 |
dataset_config = check_dataset_and_get_config(dataset_id)
|
|
@@ -74,7 +75,8 @@ def get_display_df(df):
|
|
| 74 |
|
| 75 |
|
| 76 |
def get_demo():
|
| 77 |
-
records = get_records_from_dataset_repo(LEADERBOARD)
|
|
|
|
| 78 |
|
| 79 |
model_ids = get_model_ids(records)
|
| 80 |
dataset_ids = get_dataset_ids(records)
|
|
@@ -124,6 +126,7 @@ def get_demo():
|
|
| 124 |
outputs=[leaderboard_df],
|
| 125 |
)
|
| 126 |
def filter_table(model_id, dataset_id, columns, task):
|
|
|
|
| 127 |
# filter the table based on task
|
| 128 |
df = records[(records["task"] == task)]
|
| 129 |
# filter the table based on the model_id and dataset_id
|
|
|
|
| 7 |
check_dataset_and_get_split)
|
| 8 |
from text_classification_ui_helpers import LEADERBOARD
|
| 9 |
|
| 10 |
+
import leaderboard
|
| 11 |
|
| 12 |
def get_records_from_dataset_repo(dataset_id):
|
| 13 |
dataset_config = check_dataset_and_get_config(dataset_id)
|
|
|
|
| 75 |
|
| 76 |
|
| 77 |
def get_demo():
|
| 78 |
+
leaderboard.records = get_records_from_dataset_repo(LEADERBOARD)
|
| 79 |
+
records = leaderboard.records
|
| 80 |
|
| 81 |
model_ids = get_model_ids(records)
|
| 82 |
dataset_ids = get_dataset_ids(records)
|
|
|
|
| 126 |
outputs=[leaderboard_df],
|
| 127 |
)
|
| 128 |
def filter_table(model_id, dataset_id, columns, task):
|
| 129 |
+
records = leaderboard.records
|
| 130 |
# filter the table based on task
|
| 131 |
df = records[(records["task"] == task)]
|
| 132 |
# filter the table based on the model_id and dataset_id
|
app_text_classification.py
CHANGED
|
@@ -4,6 +4,7 @@ import gradio as gr
|
|
| 4 |
|
| 5 |
from io_utils import get_logs_file, read_scanners, write_scanners
|
| 6 |
from text_classification_ui_helpers import (
|
|
|
|
| 7 |
align_columns_and_show_prediction,
|
| 8 |
check_dataset,
|
| 9 |
deselect_run_inference,
|
|
@@ -18,7 +19,6 @@ MAX_LABELS = 40
|
|
| 18 |
MAX_FEATURES = 20
|
| 19 |
|
| 20 |
EXAMPLE_MODEL_ID = "cardiffnlp/twitter-roberta-base-sentiment-latest"
|
| 21 |
-
EXAMPLE_DATA_ID = "tweet_eval"
|
| 22 |
CONFIG_PATH = "./config.yaml"
|
| 23 |
|
| 24 |
|
|
@@ -34,10 +34,13 @@ def get_demo():
|
|
| 34 |
placeholder=EXAMPLE_MODEL_ID + " (press enter to confirm)",
|
| 35 |
)
|
| 36 |
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
with gr.Row():
|
| 43 |
dataset_config_input = gr.Dropdown(label="Dataset Config", visible=False, allow_custom_value=True)
|
|
@@ -77,15 +80,16 @@ def get_demo():
|
|
| 77 |
for _ in range(MAX_LABELS, MAX_LABELS + MAX_FEATURES):
|
| 78 |
column_mappings.append(gr.Dropdown(visible=False))
|
| 79 |
|
| 80 |
-
with gr.Accordion(label="Model Wrap Advance Config
|
| 81 |
-
|
| 82 |
-
run_inference = gr.Checkbox(value=False, label="Run with Inference API")
|
| 83 |
inference_token = gr.Textbox(
|
| 84 |
value="",
|
| 85 |
label="HF Token for Inference API",
|
| 86 |
-
visible=
|
| 87 |
interactive=True,
|
| 88 |
)
|
|
|
|
|
|
|
| 89 |
|
| 90 |
with gr.Accordion(label="Scanner Advance Config (optional)", open=False):
|
| 91 |
scanners = gr.CheckboxGroup(label="Scan Settings", visible=True)
|
|
@@ -149,6 +153,13 @@ def get_demo():
|
|
| 149 |
outputs=[inference_token, run_inference],
|
| 150 |
)
|
| 151 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
gr.on(
|
| 153 |
triggers=[label.change for label in column_mappings],
|
| 154 |
fn=write_column_mapping_to_config,
|
|
@@ -196,6 +207,8 @@ def get_demo():
|
|
| 196 |
dataset_config_input,
|
| 197 |
dataset_split_input,
|
| 198 |
uid_label,
|
|
|
|
|
|
|
| 199 |
],
|
| 200 |
outputs=[
|
| 201 |
example_input,
|
|
@@ -225,7 +238,11 @@ def get_demo():
|
|
| 225 |
outputs=[run_btn, logs, uid_label],
|
| 226 |
)
|
| 227 |
|
| 228 |
-
def enable_run_btn():
|
|
|
|
|
|
|
|
|
|
|
|
|
| 229 |
return gr.update(interactive=True)
|
| 230 |
|
| 231 |
gr.on(
|
|
@@ -236,13 +253,27 @@ def get_demo():
|
|
| 236 |
scanners.input,
|
| 237 |
],
|
| 238 |
fn=enable_run_btn,
|
| 239 |
-
inputs=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 240 |
outputs=[run_btn],
|
| 241 |
)
|
| 242 |
|
| 243 |
gr.on(
|
| 244 |
triggers=[label.input for label in column_mappings],
|
| 245 |
fn=enable_run_btn,
|
| 246 |
-
inputs=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 247 |
outputs=[run_btn],
|
| 248 |
)
|
|
|
|
| 4 |
|
| 5 |
from io_utils import get_logs_file, read_scanners, write_scanners
|
| 6 |
from text_classification_ui_helpers import (
|
| 7 |
+
get_related_datasets_from_leaderboard,
|
| 8 |
align_columns_and_show_prediction,
|
| 9 |
check_dataset,
|
| 10 |
deselect_run_inference,
|
|
|
|
| 19 |
MAX_FEATURES = 20
|
| 20 |
|
| 21 |
EXAMPLE_MODEL_ID = "cardiffnlp/twitter-roberta-base-sentiment-latest"
|
|
|
|
| 22 |
CONFIG_PATH = "./config.yaml"
|
| 23 |
|
| 24 |
|
|
|
|
| 34 |
placeholder=EXAMPLE_MODEL_ID + " (press enter to confirm)",
|
| 35 |
)
|
| 36 |
|
| 37 |
+
with gr.Column():
|
| 38 |
+
dataset_id_input = gr.Dropdown(
|
| 39 |
+
choices=[],
|
| 40 |
+
value="",
|
| 41 |
+
allow_custom_value=True,
|
| 42 |
+
label="Hugging Face Dataset id",
|
| 43 |
+
)
|
| 44 |
|
| 45 |
with gr.Row():
|
| 46 |
dataset_config_input = gr.Dropdown(label="Dataset Config", visible=False, allow_custom_value=True)
|
|
|
|
| 80 |
for _ in range(MAX_LABELS, MAX_LABELS + MAX_FEATURES):
|
| 81 |
column_mappings.append(gr.Dropdown(visible=False))
|
| 82 |
|
| 83 |
+
with gr.Accordion(label="Model Wrap Advance Config", open=True):
|
| 84 |
+
run_inference = gr.Checkbox(value=True, label="Run with Inference API")
|
|
|
|
| 85 |
inference_token = gr.Textbox(
|
| 86 |
value="",
|
| 87 |
label="HF Token for Inference API",
|
| 88 |
+
visible=True,
|
| 89 |
interactive=True,
|
| 90 |
)
|
| 91 |
+
run_local = gr.Checkbox(value=False, label="Run Locally with Pipeline [Slow]")
|
| 92 |
+
|
| 93 |
|
| 94 |
with gr.Accordion(label="Scanner Advance Config (optional)", open=False):
|
| 95 |
scanners = gr.CheckboxGroup(label="Scan Settings", visible=True)
|
|
|
|
| 153 |
outputs=[inference_token, run_inference],
|
| 154 |
)
|
| 155 |
|
| 156 |
+
gr.on(
|
| 157 |
+
triggers=[model_id_input.change],
|
| 158 |
+
fn=get_related_datasets_from_leaderboard,
|
| 159 |
+
inputs=[model_id_input],
|
| 160 |
+
outputs=[dataset_id_input],
|
| 161 |
+
)
|
| 162 |
+
|
| 163 |
gr.on(
|
| 164 |
triggers=[label.change for label in column_mappings],
|
| 165 |
fn=write_column_mapping_to_config,
|
|
|
|
| 207 |
dataset_config_input,
|
| 208 |
dataset_split_input,
|
| 209 |
uid_label,
|
| 210 |
+
run_inference,
|
| 211 |
+
inference_token,
|
| 212 |
],
|
| 213 |
outputs=[
|
| 214 |
example_input,
|
|
|
|
| 238 |
outputs=[run_btn, logs, uid_label],
|
| 239 |
)
|
| 240 |
|
| 241 |
+
def enable_run_btn(run_inference, inference_token, model_id, dataset_id, dataset_config, dataset_split):
|
| 242 |
+
if run_inference and inference_token == "":
|
| 243 |
+
return gr.update(interactive=False)
|
| 244 |
+
if model_id == "" or dataset_id == "" or dataset_config == "" or dataset_split == "":
|
| 245 |
+
return gr.update(interactive=False)
|
| 246 |
return gr.update(interactive=True)
|
| 247 |
|
| 248 |
gr.on(
|
|
|
|
| 253 |
scanners.input,
|
| 254 |
],
|
| 255 |
fn=enable_run_btn,
|
| 256 |
+
inputs=[
|
| 257 |
+
run_inference,
|
| 258 |
+
inference_token,
|
| 259 |
+
model_id_input,
|
| 260 |
+
dataset_id_input,
|
| 261 |
+
dataset_config_input,
|
| 262 |
+
dataset_split_input
|
| 263 |
+
],
|
| 264 |
outputs=[run_btn],
|
| 265 |
)
|
| 266 |
|
| 267 |
gr.on(
|
| 268 |
triggers=[label.input for label in column_mappings],
|
| 269 |
fn=enable_run_btn,
|
| 270 |
+
inputs=[
|
| 271 |
+
run_inference,
|
| 272 |
+
inference_token,
|
| 273 |
+
model_id_input,
|
| 274 |
+
dataset_id_input,
|
| 275 |
+
dataset_config_input,
|
| 276 |
+
dataset_split_input
|
| 277 |
+
], # FIXME
|
| 278 |
outputs=[run_btn],
|
| 279 |
)
|
leaderboard.py
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
|
| 3 |
+
records = pd.DataFrame()
|
text_classification_ui_helpers.py
CHANGED
|
@@ -4,6 +4,7 @@ import logging
|
|
| 4 |
import os
|
| 5 |
import threading
|
| 6 |
import uuid
|
|
|
|
| 7 |
|
| 8 |
import datasets
|
| 9 |
import gradio as gr
|
|
@@ -42,6 +43,15 @@ HF_GSK_HUB_HF_TOKEN = "GSK_HF_TOKEN"
|
|
| 42 |
HF_GSK_HUB_UNLOCK_TOKEN = "GSK_HUB_UNLOCK_TOKEN"
|
| 43 |
|
| 44 |
LEADERBOARD = "giskard-bot/evaluator-leaderboard"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
|
| 47 |
logger = logging.getLogger(__file__)
|
|
@@ -207,7 +217,7 @@ def precheck_model_ds_enable_example_btn(
|
|
| 207 |
|
| 208 |
|
| 209 |
def align_columns_and_show_prediction(
|
| 210 |
-
model_id, dataset_id, dataset_config, dataset_split, uid
|
| 211 |
):
|
| 212 |
ppl = check_model(model_id)
|
| 213 |
if ppl is None or not isinstance(ppl, TextClassificationPipeline):
|
|
@@ -268,7 +278,7 @@ def align_columns_and_show_prediction(
|
|
| 268 |
gr.update(value=MAPPING_STYLED_ERROR_WARNING, visible=True),
|
| 269 |
gr.update(visible=False),
|
| 270 |
gr.update(visible=True, open=True),
|
| 271 |
-
gr.update(interactive=
|
| 272 |
"",
|
| 273 |
*column_mappings,
|
| 274 |
)
|
|
@@ -280,7 +290,7 @@ def align_columns_and_show_prediction(
|
|
| 280 |
gr.update(value=get_styled_input(prediction_input), visible=True),
|
| 281 |
gr.update(value=prediction_output, visible=True),
|
| 282 |
gr.update(visible=True, open=False),
|
| 283 |
-
gr.update(interactive=
|
| 284 |
"",
|
| 285 |
*column_mappings,
|
| 286 |
)
|
|
|
|
| 4 |
import os
|
| 5 |
import threading
|
| 6 |
import uuid
|
| 7 |
+
import leaderboard
|
| 8 |
|
| 9 |
import datasets
|
| 10 |
import gradio as gr
|
|
|
|
| 43 |
HF_GSK_HUB_UNLOCK_TOKEN = "GSK_HUB_UNLOCK_TOKEN"
|
| 44 |
|
| 45 |
LEADERBOARD = "giskard-bot/evaluator-leaderboard"
|
| 46 |
+
def get_related_datasets_from_leaderboard(model_id):
|
| 47 |
+
records = leaderboard.records
|
| 48 |
+
model_records = records[records["model_id"] == model_id]
|
| 49 |
+
datasets_unique = model_records["dataset_id"].unique()
|
| 50 |
+
if len(datasets_unique) == 0:
|
| 51 |
+
all_unique_datasets = list(records["dataset_id"].unique())
|
| 52 |
+
print(type(all_unique_datasets), all_unique_datasets)
|
| 53 |
+
return gr.update(choices=all_unique_datasets, value="")
|
| 54 |
+
return gr.update(choices=datasets_unique, value=datasets_unique[0])
|
| 55 |
|
| 56 |
|
| 57 |
logger = logging.getLogger(__file__)
|
|
|
|
| 217 |
|
| 218 |
|
| 219 |
def align_columns_and_show_prediction(
|
| 220 |
+
model_id, dataset_id, dataset_config, dataset_split, uid, run_inference, inference_token
|
| 221 |
):
|
| 222 |
ppl = check_model(model_id)
|
| 223 |
if ppl is None or not isinstance(ppl, TextClassificationPipeline):
|
|
|
|
| 278 |
gr.update(value=MAPPING_STYLED_ERROR_WARNING, visible=True),
|
| 279 |
gr.update(visible=False),
|
| 280 |
gr.update(visible=True, open=True),
|
| 281 |
+
gr.update(interactive=(run_inference and inference_token != "")),
|
| 282 |
"",
|
| 283 |
*column_mappings,
|
| 284 |
)
|
|
|
|
| 290 |
gr.update(value=get_styled_input(prediction_input), visible=True),
|
| 291 |
gr.update(value=prediction_output, visible=True),
|
| 292 |
gr.update(visible=True, open=False),
|
| 293 |
+
gr.update(interactive=(run_inference and inference_token != "")),
|
| 294 |
"",
|
| 295 |
*column_mappings,
|
| 296 |
)
|