2 demons covering biases in other categories
#5
by
XinGuan2000
- opened
pages/2_new_Demo_1.py
CHANGED
|
@@ -123,13 +123,13 @@ else:
|
|
| 123 |
with st.spinner('Computing regard results...'):
|
| 124 |
regard_male_results = regard.compute(data=st.session_state['male_continuations'],
|
| 125 |
references=st.session_state['male_wiki_continuation'])
|
| 126 |
-
st.write('**
|
| 127 |
st.json(regard_male_results)
|
| 128 |
st.session_state['rmr'] = regard_male_results
|
| 129 |
|
| 130 |
regard_female_results = regard.compute(data=st.session_state['female_continuations'],
|
| 131 |
references=st.session_state['female_wiki_continuation'])
|
| 132 |
-
st.write('**
|
| 133 |
st.json(regard_female_results)
|
| 134 |
st.session_state['rfr'] = regard_female_results
|
| 135 |
|
|
|
|
| 123 |
with st.spinner('Computing regard results...'):
|
| 124 |
regard_male_results = regard.compute(data=st.session_state['male_continuations'],
|
| 125 |
references=st.session_state['male_wiki_continuation'])
|
| 126 |
+
st.write('**Male Regard Results:**')
|
| 127 |
st.json(regard_male_results)
|
| 128 |
st.session_state['rmr'] = regard_male_results
|
| 129 |
|
| 130 |
regard_female_results = regard.compute(data=st.session_state['female_continuations'],
|
| 131 |
references=st.session_state['female_wiki_continuation'])
|
| 132 |
+
st.write('**Female Regard Results:**')
|
| 133 |
st.json(regard_female_results)
|
| 134 |
st.session_state['rfr'] = regard_female_results
|
| 135 |
|
pages/3_Demo_pairwise_computation.py
ADDED
|
@@ -0,0 +1,238 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
from datasets import load_dataset, Dataset
|
| 4 |
+
from random import sample
|
| 5 |
+
from utils.metric import Regard
|
| 6 |
+
from utils.model import gpt2
|
| 7 |
+
import matplotlib.pyplot as plt
|
| 8 |
+
import os
|
| 9 |
+
|
| 10 |
+
# Set up the Streamlit interface
|
| 11 |
+
st.title('Gender Bias Analysis in Text Generation')
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def check_password():
|
| 15 |
+
def password_entered():
|
| 16 |
+
if password_input == os.getenv('PASSWORD'):
|
| 17 |
+
# if password_input == " ":
|
| 18 |
+
st.session_state['password_correct'] = True
|
| 19 |
+
else:
|
| 20 |
+
st.error("Incorrect Password, please try again.")
|
| 21 |
+
|
| 22 |
+
password_input = st.text_input("Enter Password:", type="password")
|
| 23 |
+
submit_button = st.button("Submit", on_click=password_entered)
|
| 24 |
+
|
| 25 |
+
if submit_button and not st.session_state.get('password_correct', False):
|
| 26 |
+
st.error("Please enter a valid password to access the demo.")
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
if not st.session_state.get('password_correct', False):
|
| 30 |
+
check_password()
|
| 31 |
+
else:
|
| 32 |
+
st.sidebar.success("Password Verified. Proceed with the demo.")
|
| 33 |
+
|
| 34 |
+
if 'data_size' not in st.session_state:
|
| 35 |
+
st.session_state['data_size'] = 10
|
| 36 |
+
if 'bold' not in st.session_state:
|
| 37 |
+
bold = pd.DataFrame({})
|
| 38 |
+
bold_raw = pd.DataFrame(load_dataset("AlexaAI/bold", split="train"))
|
| 39 |
+
for index, row in bold_raw.iterrows():
|
| 40 |
+
bold_raw_prompts = list(row['prompts'])
|
| 41 |
+
bold_raw_wikipedia = list(row['wikipedia'])
|
| 42 |
+
bold_expansion = zip(bold_raw_prompts, bold_raw_wikipedia)
|
| 43 |
+
for bold_prompt, bold_wikipedia in bold_expansion:
|
| 44 |
+
bold = bold._append(
|
| 45 |
+
{'domain': row['domain'], 'name': row['name'], 'category': row['category'], 'prompts': bold_prompt,
|
| 46 |
+
'wikipedia': bold_wikipedia}, ignore_index=True)
|
| 47 |
+
st.session_state['bold'] = Dataset.from_pandas(bold)
|
| 48 |
+
if 'female_bold' not in st.session_state:
|
| 49 |
+
st.session_state['female_bold'] = []
|
| 50 |
+
if 'male_bold' not in st.session_state:
|
| 51 |
+
st.session_state['male_bold'] = []
|
| 52 |
+
|
| 53 |
+
domain = st.selectbox(
|
| 54 |
+
"Select your domain",
|
| 55 |
+
pd.DataFrame(st.session_state['bold'])['domain'].unique())
|
| 56 |
+
domain_limited = [p for p in st.session_state['bold'] if p['domain'] == domain]
|
| 57 |
+
|
| 58 |
+
st.session_state['option_one'] = st.selectbox(
|
| 59 |
+
"Select your profession 1",
|
| 60 |
+
pd.DataFrame(domain_limited)['category'].unique())
|
| 61 |
+
option_one_list = [p for p in st.session_state['bold'] if p['category'] == st.session_state['option_one']]
|
| 62 |
+
o_one = st.session_state['option_one']
|
| 63 |
+
st.session_state['option_two'] = st.selectbox(
|
| 64 |
+
"Select your profession 2",
|
| 65 |
+
pd.DataFrame(domain_limited)['category'].unique())
|
| 66 |
+
option_two_list = [p for p in st.session_state['bold'] if p['category'] == st.session_state['option_two']]
|
| 67 |
+
o_two = st.session_state['option_two']
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
st.subheader('Step 1: Set Data Size')
|
| 71 |
+
max_length = min(len(option_one_list), len(option_two_list), 50)
|
| 72 |
+
data_size = st.slider('Select number of samples per category:', min_value=1, max_value=max_length,
|
| 73 |
+
value=st.session_state['data_size'])
|
| 74 |
+
st.session_state['data_size'] = data_size
|
| 75 |
+
|
| 76 |
+
if st.button('Show Data'):
|
| 77 |
+
st.session_state['male_bold'] = sample(
|
| 78 |
+
option_one_list, data_size)
|
| 79 |
+
st.session_state['female_bold'] = sample(
|
| 80 |
+
option_two_list, data_size)
|
| 81 |
+
|
| 82 |
+
st.write(f'Sampled {data_size} female and male American actors.')
|
| 83 |
+
st.write(f'**{o_one} Samples:**', pd.DataFrame(st.session_state['female_bold']))
|
| 84 |
+
st.write(f'**{o_two} Samples:**', pd.DataFrame(st.session_state['male_bold']))
|
| 85 |
+
|
| 86 |
+
if st.session_state['female_bold'] and st.session_state['male_bold']:
|
| 87 |
+
st.subheader('Step 2: Generate Text')
|
| 88 |
+
|
| 89 |
+
if st.button('Generate Text'):
|
| 90 |
+
GPT2 = gpt2()
|
| 91 |
+
st.session_state['male_prompts'] = [p['prompts'] for p in st.session_state['male_bold']]
|
| 92 |
+
st.session_state['female_prompts'] = [p['prompts'] for p in st.session_state['female_bold']]
|
| 93 |
+
st.session_state['male_wiki_continuation'] = [p['wikipedia'].replace(p['prompts'], '') for p in
|
| 94 |
+
st.session_state['male_bold']]
|
| 95 |
+
st.session_state['female_wiki_continuation'] = [p['wikipedia'].replace(p['prompts'], '') for p in
|
| 96 |
+
st.session_state['female_bold']]
|
| 97 |
+
|
| 98 |
+
progress_bar = st.progress(0)
|
| 99 |
+
|
| 100 |
+
st.write(f'Generating text for {o_one} prompts...')
|
| 101 |
+
male_generation = GPT2.text_generation(st.session_state['male_prompts'], pad_token_id=50256, max_length=50,
|
| 102 |
+
do_sample=False, truncation=True)
|
| 103 |
+
st.session_state['male_continuations'] = [gen[0]['generated_text'].replace(prompt, '') for gen, prompt in
|
| 104 |
+
zip(male_generation, st.session_state['male_prompts'])]
|
| 105 |
+
|
| 106 |
+
progress_bar.progress(50)
|
| 107 |
+
|
| 108 |
+
st.write(f'Generating text for {o_two} prompts...')
|
| 109 |
+
female_generation = GPT2.text_generation(st.session_state['female_prompts'], pad_token_id=50256,
|
| 110 |
+
max_length=50, do_sample=False, truncation=True)
|
| 111 |
+
st.session_state['female_continuations'] = [gen[0]['generated_text'].replace(prompt, '') for gen, prompt in
|
| 112 |
+
zip(female_generation, st.session_state['female_prompts'])]
|
| 113 |
+
|
| 114 |
+
progress_bar.progress(100)
|
| 115 |
+
st.write('Text generation completed.')
|
| 116 |
+
|
| 117 |
+
st.session_state.pop('rmr', None)
|
| 118 |
+
st.session_state.pop('rfr', None)
|
| 119 |
+
st.subheader('Step 3: Sample Generated Texts')
|
| 120 |
+
|
| 121 |
+
if st.session_state.get('male_continuations') and st.session_state.get('female_continuations'):
|
| 122 |
+
|
| 123 |
+
st.write(f"{o_one} Data Samples:")
|
| 124 |
+
samples_df = pd.DataFrame({
|
| 125 |
+
f'{o_one} Prompt': st.session_state['male_prompts'],
|
| 126 |
+
f'{o_one} Continuation': st.session_state['male_continuations'],
|
| 127 |
+
f'{o_one} Wiki Continuation': st.session_state['male_wiki_continuation'],
|
| 128 |
+
})
|
| 129 |
+
st.write(samples_df)
|
| 130 |
+
|
| 131 |
+
st.write(f"{o_two} Data Samples:")
|
| 132 |
+
samples_df = pd.DataFrame({
|
| 133 |
+
f'{o_two} Prompt': st.session_state['female_prompts'],
|
| 134 |
+
f'{o_two} Continuation': st.session_state['female_continuations'],
|
| 135 |
+
f'{o_two} Wiki Continuation': st.session_state['female_wiki_continuation'],
|
| 136 |
+
})
|
| 137 |
+
st.write(samples_df)
|
| 138 |
+
|
| 139 |
+
if st.button('Evaluate'):
|
| 140 |
+
st.subheader('Step 4: Regard Results')
|
| 141 |
+
regard = Regard("inner_compare")
|
| 142 |
+
st.write('Computing regard results to compare male and female continuations...')
|
| 143 |
+
|
| 144 |
+
with st.spinner('Computing regard results...'):
|
| 145 |
+
regard_male_results = regard.compute(data=st.session_state['male_continuations'],
|
| 146 |
+
references=st.session_state['male_wiki_continuation'])
|
| 147 |
+
st.write(f'**{o_one} Regard Results:**')
|
| 148 |
+
st.json(regard_male_results)
|
| 149 |
+
st.session_state['rmr'] = regard_male_results
|
| 150 |
+
|
| 151 |
+
regard_female_results = regard.compute(data=st.session_state['female_continuations'],
|
| 152 |
+
references=st.session_state['female_wiki_continuation'])
|
| 153 |
+
st.write(f'**{o_two} Regard Results:**')
|
| 154 |
+
st.json(regard_female_results)
|
| 155 |
+
st.session_state['rfr'] = regard_female_results
|
| 156 |
+
|
| 157 |
+
if st.session_state.get('rmr') and st.session_state.get('rfr'):
|
| 158 |
+
st.subheader('Step 5: Regard Results Plotting')
|
| 159 |
+
if st.button('Plot'):
|
| 160 |
+
categories = ['GPT2', 'Wiki']
|
| 161 |
+
|
| 162 |
+
mp_gpt = st.session_state['rmr']['no_ref_diff_mean']['positive']
|
| 163 |
+
mn_gpt = st.session_state['rmr']['no_ref_diff_mean']['negative']
|
| 164 |
+
mo_gpt = 1 - (mp_gpt + mn_gpt)
|
| 165 |
+
|
| 166 |
+
mp_wiki = mp_gpt - st.session_state['rmr']['ref_diff_mean']['positive']
|
| 167 |
+
mn_wiki = mn_gpt - st.session_state['rmr']['ref_diff_mean']['negative']
|
| 168 |
+
mo_wiki = 1 - (mn_wiki + mp_wiki)
|
| 169 |
+
|
| 170 |
+
fp_gpt = st.session_state['rfr']['no_ref_diff_mean']['positive']
|
| 171 |
+
fn_gpt = st.session_state['rfr']['no_ref_diff_mean']['negative']
|
| 172 |
+
fo_gpt = 1 - (fp_gpt + fn_gpt)
|
| 173 |
+
|
| 174 |
+
fp_wiki = fp_gpt - st.session_state['rfr']['ref_diff_mean']['positive']
|
| 175 |
+
fn_wiki = fn_gpt - st.session_state['rfr']['ref_diff_mean']['negative']
|
| 176 |
+
fo_wiki = 1 - (fn_wiki + fp_wiki)
|
| 177 |
+
|
| 178 |
+
positive_m = [mp_gpt, mp_wiki]
|
| 179 |
+
other_m = [mo_gpt, mo_wiki]
|
| 180 |
+
negative_m = [mn_gpt, mn_wiki]
|
| 181 |
+
|
| 182 |
+
positive_f = [fp_gpt, fp_wiki]
|
| 183 |
+
other_f = [fo_gpt, fo_wiki]
|
| 184 |
+
negative_f = [fn_gpt, fn_wiki]
|
| 185 |
+
|
| 186 |
+
# Plotting
|
| 187 |
+
fig_a, ax_a = plt.subplots()
|
| 188 |
+
ax_a.bar(categories, negative_m, label='Negative', color='blue')
|
| 189 |
+
ax_a.bar(categories, other_m, bottom=negative_m, label='Other', color='orange')
|
| 190 |
+
ax_a.bar(categories, positive_m, bottom=[negative_m[i] + other_m[i] for i in range(len(negative_m))],
|
| 191 |
+
label='Positive', color='green')
|
| 192 |
+
|
| 193 |
+
plt.xlabel('Categories')
|
| 194 |
+
plt.ylabel('Proportion')
|
| 195 |
+
plt.title(f'GPT vs Wiki on {o_one} regard')
|
| 196 |
+
plt.legend()
|
| 197 |
+
|
| 198 |
+
st.pyplot(fig_a)
|
| 199 |
+
|
| 200 |
+
fig_b, ax_b = plt.subplots()
|
| 201 |
+
ax_b.bar(categories, negative_f, label='Negative', color='blue')
|
| 202 |
+
ax_b.bar(categories, other_f, bottom=negative_f, label='Other', color='orange')
|
| 203 |
+
ax_b.bar(categories, positive_f, bottom=[negative_f[i] + other_f[i] for i in range(len(negative_f))],
|
| 204 |
+
label='Positive', color='green')
|
| 205 |
+
|
| 206 |
+
plt.xlabel('Categories')
|
| 207 |
+
plt.ylabel('Proportion')
|
| 208 |
+
plt.title(f'GPT vs Wiki on {o_two} regard')
|
| 209 |
+
plt.legend()
|
| 210 |
+
st.pyplot(fig_b)
|
| 211 |
+
|
| 212 |
+
m_increase = mp_gpt - mn_gpt
|
| 213 |
+
m_relative_increase = mp_gpt - mp_wiki - (mn_gpt - mn_wiki)
|
| 214 |
+
f_increase = fp_gpt - fn_gpt
|
| 215 |
+
f_relative_increase = fp_gpt - fp_wiki - (fn_gpt - fn_wiki)
|
| 216 |
+
|
| 217 |
+
absolute_difference = [m_increase, f_increase]
|
| 218 |
+
relative_difference = [m_relative_increase, f_relative_increase]
|
| 219 |
+
|
| 220 |
+
new_categories = [f'{o_one}', f'{o_two}']
|
| 221 |
+
|
| 222 |
+
fig_c, ax_c = plt.subplots()
|
| 223 |
+
ax_c.bar(new_categories, absolute_difference, label='Positive - Negative', color='#40E0D0')
|
| 224 |
+
|
| 225 |
+
plt.xlabel('Categories')
|
| 226 |
+
plt.ylabel('Proportion')
|
| 227 |
+
plt.title(f'Difference of positive and negative: {o_one} vs {o_two}')
|
| 228 |
+
plt.legend()
|
| 229 |
+
st.pyplot(fig_c)
|
| 230 |
+
|
| 231 |
+
fig_d, ax_d = plt.subplots()
|
| 232 |
+
ax_d.bar(new_categories, relative_difference, label='Positive - Negative', color='#40E0D0')
|
| 233 |
+
|
| 234 |
+
plt.xlabel('Categories')
|
| 235 |
+
plt.ylabel('Proportion')
|
| 236 |
+
plt.title(f'Difference of positive and negative (relative to Wiki): {o_one} vs {o_two}')
|
| 237 |
+
plt.legend()
|
| 238 |
+
st.pyplot(fig_d)
|
pages/4_Demo_compute_by_domain.py
ADDED
|
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
from datasets import load_dataset, Dataset
|
| 4 |
+
from random import sample
|
| 5 |
+
from utils.pairwise_comparison import one_regard_computation
|
| 6 |
+
import matplotlib.pyplot as plt
|
| 7 |
+
import os
|
| 8 |
+
|
| 9 |
+
# Set up the Streamlit interface
|
| 10 |
+
st.title('Gender Bias Analysis in Text Generation')
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def check_password():
|
| 14 |
+
def password_entered():
|
| 15 |
+
if password_input == os.getenv('PASSWORD'):
|
| 16 |
+
# if password_input == " ":
|
| 17 |
+
st.session_state['password_correct'] = True
|
| 18 |
+
else:
|
| 19 |
+
st.error("Incorrect Password, please try again.")
|
| 20 |
+
|
| 21 |
+
password_input = st.text_input("Enter Password:", type="password")
|
| 22 |
+
submit_button = st.button("Submit", on_click=password_entered)
|
| 23 |
+
|
| 24 |
+
if submit_button and not st.session_state.get('password_correct', False):
|
| 25 |
+
st.error("Please enter a valid password to access the demo.")
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
if not st.session_state.get('password_correct', False):
|
| 29 |
+
check_password()
|
| 30 |
+
else:
|
| 31 |
+
st.sidebar.success("Password Verified. Proceed with the demo.")
|
| 32 |
+
|
| 33 |
+
if 'data_size' not in st.session_state:
|
| 34 |
+
st.session_state['data_size'] = 10
|
| 35 |
+
if 'bold' not in st.session_state:
|
| 36 |
+
bold = pd.DataFrame({})
|
| 37 |
+
bold_raw = pd.DataFrame(load_dataset("AlexaAI/bold", split="train"))
|
| 38 |
+
for index, row in bold_raw.iterrows():
|
| 39 |
+
bold_raw_prompts = list(row['prompts'])
|
| 40 |
+
bold_raw_wikipedia = list(row['wikipedia'])
|
| 41 |
+
bold_expansion = zip(bold_raw_prompts, bold_raw_wikipedia)
|
| 42 |
+
for bold_prompt, bold_wikipedia in bold_expansion:
|
| 43 |
+
bold = bold._append(
|
| 44 |
+
{'domain': row['domain'], 'name': row['name'], 'category': row['category'], 'prompts': bold_prompt,
|
| 45 |
+
'wikipedia': bold_wikipedia}, ignore_index=True)
|
| 46 |
+
st.session_state['bold'] = Dataset.from_pandas(bold)
|
| 47 |
+
|
| 48 |
+
domain = st.selectbox(
|
| 49 |
+
"Select the domain",
|
| 50 |
+
pd.DataFrame(st.session_state['bold'])['domain'].unique())
|
| 51 |
+
domain_limited = [p for p in st.session_state['bold'] if p['domain'] == domain]
|
| 52 |
+
|
| 53 |
+
st.session_state['sample_size'] = st.slider('Select number of samples per category:', min_value=1, max_value=50,
|
| 54 |
+
value=st.session_state['data_size'])
|
| 55 |
+
|
| 56 |
+
if st.button('Compute'):
|
| 57 |
+
answer_dict = {}
|
| 58 |
+
category_list = pd.DataFrame(domain_limited)['category'].unique().tolist()
|
| 59 |
+
unique_pairs = []
|
| 60 |
+
ref_list = {}
|
| 61 |
+
no_ref_list = {}
|
| 62 |
+
for i in range(len(category_list)):
|
| 63 |
+
o_one = category_list[i]
|
| 64 |
+
with st.spinner(f'Computing regard results for {o_one.replace("_", " ")}'):
|
| 65 |
+
st.session_state['rmr'] = one_regard_computation(o_one, st.session_state['bold'],
|
| 66 |
+
st.session_state['sample_size'])
|
| 67 |
+
answer_dict[o_one] = (st.session_state['rmr'])
|
| 68 |
+
st.write(f'Regard results for {o_one.replace("_", " ")} computed successfully.')
|
| 69 |
+
# st.json(answer_dict[o_one])
|
| 70 |
+
ref_list[o_one] = st.session_state['rmr']['ref_diff_mean']['positive'] \
|
| 71 |
+
- st.session_state['rmr']['ref_diff_mean']['negative']
|
| 72 |
+
no_ref_list[o_one] = st.session_state['rmr']['no_ref_diff_mean']['positive'] \
|
| 73 |
+
- st.session_state['rmr']['no_ref_diff_mean']['negative']
|
| 74 |
+
|
| 75 |
+
# Plotting
|
| 76 |
+
categories = ['GPT2', 'Wiki']
|
| 77 |
+
mp_gpt = st.session_state['rmr']['no_ref_diff_mean']['positive']
|
| 78 |
+
mn_gpt = st.session_state['rmr']['no_ref_diff_mean']['negative']
|
| 79 |
+
mo_gpt = 1 - (mp_gpt + mn_gpt)
|
| 80 |
+
|
| 81 |
+
mp_wiki = mp_gpt - st.session_state['rmr']['ref_diff_mean']['positive']
|
| 82 |
+
mn_wiki = mn_gpt - st.session_state['rmr']['ref_diff_mean']['negative']
|
| 83 |
+
mo_wiki = 1 - (mn_wiki + mp_wiki)
|
| 84 |
+
|
| 85 |
+
positive_m = [mp_gpt, mp_wiki]
|
| 86 |
+
other_m = [mo_gpt, mo_wiki]
|
| 87 |
+
negative_m = [mn_gpt, mn_wiki]
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
fig_a, ax_a = plt.subplots()
|
| 91 |
+
ax_a.bar(categories, negative_m, label='Negative', color='blue')
|
| 92 |
+
ax_a.bar(categories, other_m, bottom=negative_m, label='Other', color='orange')
|
| 93 |
+
ax_a.bar(categories, positive_m, bottom=[negative_m[i] + other_m[i] for i in range(len(negative_m))],
|
| 94 |
+
label='Positive', color='green')
|
| 95 |
+
|
| 96 |
+
plt.ylabel('Proportion')
|
| 97 |
+
plt.title(f'GPT2 vs Wiki on {o_one.replace("_", " ")} regard')
|
| 98 |
+
plt.legend()
|
| 99 |
+
|
| 100 |
+
st.pyplot(fig_a)
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
st.subheader(f'The comparison of absolute regard value in {domain.replace("_", " ")} by GPT2')
|
| 104 |
+
st.bar_chart(no_ref_list)
|
| 105 |
+
st.write(f'***Max difference of absolute regard values in the {domain.replace("_", " ")}:***')
|
| 106 |
+
keys_with_max_value_no_ref = [key for key, value in no_ref_list.items() if value == max(no_ref_list.values())][0]
|
| 107 |
+
keys_with_min_value_no_ref = [key for key, value in no_ref_list.items() if value == min(no_ref_list.values())][0]
|
| 108 |
+
st.write(f' {keys_with_max_value_no_ref.replace("_", " ")} regard - {keys_with_min_value_no_ref.replace("_", " ")} regard ='
|
| 109 |
+
f'{max(ref_list.values()) - min(ref_list.values())}')
|
| 110 |
+
|
| 111 |
+
st.subheader(f'The comparison of regard value in {domain.replace("_", " ")} with references to Wikipedia by GPT2')
|
| 112 |
+
st.bar_chart(ref_list)
|
| 113 |
+
st.write(f'***Max difference of regard values in the {domain.replace("_", " ")} with references to Wikipedia:***')
|
| 114 |
+
keys_with_max_value_ref = [key for key, value in ref_list.items() if value == max(ref_list.values())][0]
|
| 115 |
+
keys_with_min_value_ref = [key for key, value in ref_list.items() if value == min(ref_list.values())][0]
|
| 116 |
+
st.write(f' {keys_with_max_value_ref.replace("_", " ")} regard - {keys_with_min_value_ref.replace("_", " ")} regard = '
|
| 117 |
+
f'{max(ref_list.values()) - min(ref_list.values())}')
|
| 118 |
+
|
| 119 |
+
|
utils/__pycache__/pairwise_comparison.cpython-311.pyc
ADDED
|
Binary file (5.95 kB). View file
|
|
|
utils/pairwise_comparison.py
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
from datasets import load_dataset, Dataset
|
| 4 |
+
from random import sample
|
| 5 |
+
from utils.metric import Regard
|
| 6 |
+
from utils.model import gpt2
|
| 7 |
+
import matplotlib.pyplot as plt
|
| 8 |
+
import os
|
| 9 |
+
|
| 10 |
+
def one_regard_computation(category: str, dataset_: Dataset, sample_size: int):
|
| 11 |
+
option_list = [p for p in dataset_ if p['category'] == category]
|
| 12 |
+
|
| 13 |
+
data_size = min(len(option_list), sample_size)
|
| 14 |
+
|
| 15 |
+
bold = sample(option_list, data_size)
|
| 16 |
+
|
| 17 |
+
GPT2 = gpt2()
|
| 18 |
+
prompts = [p['prompts'] for p in bold]
|
| 19 |
+
wikipedia = [p['wikipedia'].replace(p['prompts'], '') for p in bold]
|
| 20 |
+
|
| 21 |
+
generations = GPT2.text_generation(prompts, pad_token_id=50256, max_length=50,
|
| 22 |
+
do_sample=False, truncation=True)
|
| 23 |
+
continuation = [gen[0]['generated_text'].replace(prompt, '') for gen, prompt in
|
| 24 |
+
zip(generations, prompts)]
|
| 25 |
+
|
| 26 |
+
regard = Regard("inner_compare")
|
| 27 |
+
|
| 28 |
+
regard_results = regard.compute(data=continuation,
|
| 29 |
+
references=wikipedia)
|
| 30 |
+
|
| 31 |
+
return regard_results
|
| 32 |
+
|
| 33 |
+
def pairwise_comparison(category_one: str, category_two: str, dataset_: Dataset, sample_size: int):
|
| 34 |
+
option_one_list = [p for p in dataset_ if p['category'] == category_one]
|
| 35 |
+
option_two_list = [p for p in dataset_ if p['category'] == category_two]
|
| 36 |
+
|
| 37 |
+
data_size = min(len(option_one_list), len(option_two_list), sample_size)
|
| 38 |
+
|
| 39 |
+
bold_c_one = sample(option_one_list, data_size)
|
| 40 |
+
bold_c_two = sample(option_two_list, data_size)
|
| 41 |
+
|
| 42 |
+
GPT2 = gpt2()
|
| 43 |
+
c_one_prompts = [p['prompts'] for p in bold_c_one]
|
| 44 |
+
c_two_prompts = [p['prompts'] for p in bold_c_two]
|
| 45 |
+
c_one_wiki = [p['wikipedia'].replace(p['prompts'], '') for p in bold_c_one]
|
| 46 |
+
c_two_wiki = [p['wikipedia'].replace(p['prompts'], '') for p in bold_c_two]
|
| 47 |
+
|
| 48 |
+
c_one_generations = GPT2.text_generation(c_one_prompts, pad_token_id=50256, max_length=50,
|
| 49 |
+
do_sample=False, truncation=True)
|
| 50 |
+
c_one_continuation = [gen[0]['generated_text'].replace(prompt, '') for gen, prompt in
|
| 51 |
+
zip(c_one_generations, c_one_prompts)]
|
| 52 |
+
|
| 53 |
+
c_two_generations = GPT2.text_generation(c_two_prompts, pad_token_id=50256,
|
| 54 |
+
max_length=50, do_sample=False, truncation=True)
|
| 55 |
+
c_two_continuation = [gen[0]['generated_text'].replace(prompt, '') for gen, prompt in
|
| 56 |
+
zip(c_two_generations, c_two_prompts)]
|
| 57 |
+
|
| 58 |
+
regard = Regard("inner_compare")
|
| 59 |
+
|
| 60 |
+
regard_one_results = regard.compute(data=c_one_continuation,
|
| 61 |
+
references=c_one_wiki)
|
| 62 |
+
regard_two_results = regard.compute(data=c_two_continuation,
|
| 63 |
+
references=c_two_wiki)
|
| 64 |
+
|
| 65 |
+
return regard_one_results, regard_two_results
|