beppefolder's picture
Create app.py
97e0d2f verified
raw
history blame
2.07 kB
import gradio as gr
import torchvision.transforms as transforms
from torchvision.transforms import InterpolationMode
import torch
from huggingface_hub import hf_hub_download
from .model import Model
# Load Model
model_path = hf_hub_download(
repo_id="itserr/exvoto_classifier_convnext_base_224",
filename="model.pt"
)
model = Model('convnext_base')
ckpt = torch.load(model_path, map_location=torch.device("cpu")) # Ensure compatibility
model.load_state_dict(ckpt['model'])
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model.to(device)
model.eval()
# Image Transformations
transform = transforms.Compose([
transforms.Resize(size=(224,224), interpolation=InterpolationMode.BICUBIC),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
# Classification Function
def classify_img(img, threshold):
classification_threshold = threshold
img_tensor = transform(img).unsqueeze(0).to(device)
with torch.no_grad():
pred = model(img_tensor)
score = torch.sigmoid(pred).item()
# Determine Prediction
if score >= classification_threshold:
label = "βœ… This is an **Ex-Voto** image!"
else:
label = "❌ This is **NOT** an Ex-Voto image."
# Format Confidence Score
confidence = f"The probability that the image is an ex-voto is: {score:.2%}"
return label, confidence
# # **🎨 Customized Interface**
demo = gr.Interface(
fn=classify_img,
inputs=[
gr.Image(type="pil"),
gr.Slider(minimum=0.5, maximum=1.0, value=0.7, step=0.1, label="Classification Threshold")
],
outputs=[
gr.Textbox(label="Prediction", interactive=False),
gr.Textbox(label="Confidence Score", interactive=False),
],
title="πŸ–ΌοΈβœŸ Ex-Voto Image Classifier",
description="πŸ“Έ **Upload an image** to check if it's an **Ex-Voto** painting!",
theme="soft",
allow_flagging="never",
live=False, # Avoids auto-updating; requires a button click
)
# Launch App
demo.launch()