Spaces:
Sleeping
Sleeping
File size: 8,241 Bytes
4e2ac81 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
import os
import json
import torch
import gradio as gr
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download
from transformers import AutoTokenizer
# -----------------------------
# Config: where to load things
# -----------------------------
# Tokenizer repo (already published)
TOKENIZER_REPO = os.environ.get("COOGEE_TOKENIZER_REPO", "jameszhou-gl/ehr-gpt")
# Where to get model weights/config:
# - Option A (default): from the same HF repo as tokenizer (set names below)
# - Option B: from local files (set LOCAL_* paths)
WEIGHT_REPO = os.environ.get("COOGEE_WEIGHT_REPO", TOKENIZER_REPO)
WEIGHT_FILENAME = os.environ.get("COOGEE_WEIGHT_FILENAME", "model.safetensors")
CONFIG_FILENAME = os.environ.get("COOGEE_CONFIG_FILENAME", "config.json")
LOCAL_WEIGHT = os.environ.get("COOGEE_LOCAL_WEIGHT", "") # e.g., "hf_upload_tmp/model.safetensors"
LOCAL_CONFIG = os.environ.get("COOGEE_LOCAL_CONFIG", "") # e.g., "hf_upload_tmp/config.json"
# Optional: HF token if the repo is private in a Space
HF_TOKEN = os.environ.get("HF_TOKEN", None)
# -----------------------------
# 1) Import your local model code
# -----------------------------
from model.model import Transformer, ModelArgs # <- YOUR local classes
# -----------------------------
# 2) Load tokenizer
# -----------------------------
tok = AutoTokenizer.from_pretrained(TOKENIZER_REPO, use_fast=False)
# EOS handling: prefer tokenizer.eos_token_id, or fall back to END_RECORD
def get_eos_id():
if tok.eos_token_id is not None:
return tok.eos_token_id
try:
return tok.convert_tokens_to_ids("END_RECORD")
except Exception:
raise ValueError("No eos_token_id and 'END_RECORD' not found; set eos_token in tokenizer_config.json.")
EOS_ID = get_eos_id()
# -----------------------------
# 3) Load config & weights
# -----------------------------
if LOCAL_CONFIG and os.path.isfile(LOCAL_CONFIG):
cfg_path = LOCAL_CONFIG
else:
cfg_path = hf_hub_download(WEIGHT_REPO, filename=CONFIG_FILENAME, token=HF_TOKEN)
with open(cfg_path, "r") as f:
cfg = json.load(f)
args = ModelArgs(**cfg)
model = Transformer(args)
if LOCAL_WEIGHT and os.path.isfile(LOCAL_WEIGHT):
weight_path = LOCAL_WEIGHT
else:
weight_path = hf_hub_download(WEIGHT_REPO, filename=WEIGHT_FILENAME, token=HF_TOKEN)
state = load_file(weight_path)
missing, unexpected = model.load_state_dict(state, strict=False)
if missing or unexpected:
print("[load_state_dict] missing:", missing)
print("[load_state_dict] unexpected:", unexpected)
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device).eval()
# -----------------------------
# 4) Generation wrapper
# -----------------------------
def _has_generate(m):
return callable(getattr(m, "generate", None))
def _fallback_sample(input_ids, max_new_tokens=256, temperature=1.0, top_p=0.95, top_k=50):
"""
Minimal sampling loop if your Transformer doesn't implement .generate().
Assumes model(input_ids) -> logits [B, T, V].
Stops on EOS_ID.
"""
model.eval()
ids = input_ids.clone()
with torch.no_grad():
for _ in range(int(max_new_tokens)):
logits = model(ids) # your forward may return logits directly; if it returns dict, adapt here
if isinstance(logits, dict):
logits = logits["logits"]
next_logits = logits[:, -1, :] / max(temperature, 1e-6) # [B, V]
# top-k / nucleus
if top_k and top_k > 0:
topk_vals, topk_idx = torch.topk(next_logits, k=min(top_k, next_logits.size(-1)), dim=-1)
filt = torch.full_like(next_logits, float("-inf"))
filt.scatter_(1, topk_idx, topk_vals)
next_logits = filt
if 0.0 < top_p < 1.0:
sorted_logits, sorted_idx = torch.sort(next_logits, descending=True)
probs = torch.softmax(sorted_logits, dim=-1)
cum = torch.cumsum(probs, dim=-1)
mask = cum > top_p
mask[..., 1:] = mask[..., :-1].clone()
mask[..., 0] = False
sorted_logits = sorted_logits.masked_fill(mask, float("-inf"))
next_logits = torch.zeros_like(next_logits).scatter(1, sorted_idx, sorted_logits)
probs = torch.softmax(next_logits, dim=-1)
next_id = torch.multinomial(probs, num_samples=1) # [B, 1]
ids = torch.cat([ids, next_id], dim=1) # [B, T+1]
if int(next_id.item()) == EOS_ID:
break
return ids
def generate_timeline(age, sex, race, marital, year,
max_new_tokens, temperature, top_p, top_k, seed):
# Build prompt tokens
prompt_tokens = [
"START_RECORD",
age, sex, race, marital, year,
]
# to ids
try:
ids = [[tok.convert_tokens_to_ids(t) for t in prompt_tokens]]
except Exception as e:
return f"Tokenization error: {e}", ""
input_ids = torch.tensor(ids, dtype=torch.long, device=device)
# Seed
if seed is not None and str(seed).strip() != "":
try:
s = int(seed)
torch.manual_seed(s)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(s)
except Exception:
pass
# Generate
if _has_generate(model):
out = model.generate(
input_ids=input_ids,
max_length=min(args.n_ctx, input_ids.size(1) + int(max_new_tokens)),
temperature=float(temperature),
top_p=float(top_p),
top_k=int(top_k),
do_sample=True,
eos_token_id=EOS_ID,
)
else:
out = _fallback_sample(
input_ids, max_new_tokens=int(max_new_tokens),
temperature=float(temperature), top_p=float(top_p), top_k=int(top_k)
)
gen_ids = out[0, input_ids.size(1):].tolist()
if EOS_ID in gen_ids:
end_idx = gen_ids.index(EOS_ID)
gen_ids = gen_ids[: end_idx + 1]
gen_tokens = tok.convert_ids_to_tokens(gen_ids)
timeline = prompt_tokens + gen_tokens
text_view = " ".join(timeline)
table_view = [[i, t] for i, t in enumerate(timeline)]
return text_view, table_view
# -----------------------------
# 5) Gradio UI
# -----------------------------
AGE_OPTS = [f"AGE_{a}_{a+5}_years" for a in range(15, 100, 5)]
SEX_OPTS = ["SEX_M", "SEX_F"]
RACE_OPTS = ["RACE_ASIAN", "RACE_BLACK", "RACE_HISPANIC", "RACE_OTHER", "RACE_UNKNOWN", "RACE_WHITE"]
MARITAL_OPTS = ["MARITAL_STATUS_DIVORCED", "MARITAL_STATUS_MARRIED", "MARITAL_STATUS_SINGLE",
"MARITAL_STATUS_UNKNOWN", "MARITAL_STATUS_WIDOWED"]
YEAR_OPTS = [f"YEAR_{y}" for y in range(2005, 2021)]
with gr.Blocks(title="Coogee (local model) β Synthetic EHR Generator") as demo:
gr.Markdown("## Coogee β Generate synthetic EHR timelines (local model class)")
with gr.Row():
age = gr.Dropdown(AGE_OPTS, value="AGE_85_90_years", label="Age")
sex = gr.Dropdown(SEX_OPTS, value="SEX_M", label="Sex")
race = gr.Dropdown(RACE_OPTS, value="RACE_UNKNOWN", label="Ethnicity")
marital = gr.Dropdown(MARITAL_OPTS, value="MARITAL_STATUS_WIDOWED", label="Marital")
year = gr.Dropdown(YEAR_OPTS, value="YEAR_2017", label="Year")
with gr.Row():
max_new_tokens = gr.Slider(16, 1024, value=256, step=1, label="Max new tokens")
temperature = gr.Slider(0.1, 2.0, value=1.0, step=0.05, label="Temperature")
top_p = gr.Slider(0.1, 1.0, value=0.95, step=0.01, label="Top-p")
top_k = gr.Slider(0, 200, value=50, step=1, label="Top-k")
seed = gr.Textbox(value="", label="Seed (optional)")
btn = gr.Button("Generate")
out_text = gr.Textbox(lines=6, label="Generated timeline")
out_table = gr.Dataframe(headers=["Idx", "Token"], label="Token table", interactive=False)
btn.click(
fn=generate_timeline,
inputs=[age, sex, race, marital, year, max_new_tokens, temperature, top_p, top_k, seed],
outputs=[out_text, out_table],
api_name="generate",
)
demo.queue(max_size=20).launch() |