Spaces:
Runtime error
Runtime error
| from diffusers import DiffusionPipeline, LCMScheduler, AutoencoderTiny | |
| from compel import Compel, ReturnedEmbeddingsType | |
| import torch | |
| import os | |
| try: | |
| import intel_extension_for_pytorch as ipex | |
| except: | |
| pass | |
| from PIL import Image | |
| import numpy as np | |
| import gradio as gr | |
| import psutil | |
| SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None) | |
| TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None) | |
| HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
| # check if MPS is available OSX only M1/M2/M3 chips | |
| mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available() | |
| xpu_available = hasattr(torch, "xpu") and torch.xpu.is_available() | |
| device = torch.device( | |
| "cuda" if torch.cuda.is_available() else "xpu" if xpu_available else "cpu" | |
| ) | |
| torch_device = device | |
| torch_dtype = torch.float16 | |
| print(f"SAFETY_CHECKER: {SAFETY_CHECKER}") | |
| print(f"TORCH_COMPILE: {TORCH_COMPILE}") | |
| print(f"device: {device}") | |
| if mps_available: | |
| device = torch.device("mps") | |
| torch_device = "cpu" | |
| torch_dtype = torch.float32 | |
| model_id = "stabilityai/stable-diffusion-xl-base-1.0" | |
| if SAFETY_CHECKER == "True": | |
| pipe = DiffusionPipeline.from_pretrained(model_id) | |
| else: | |
| pipe = DiffusionPipeline.from_pretrained(model_id, safety_checker=None) | |
| pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) | |
| pipe.to(device=torch_device, dtype=torch_dtype).to(device) | |
| pipe.unet.to(memory_format=torch.channels_last) | |
| # check if computer has less than 64GB of RAM using sys or os | |
| if psutil.virtual_memory().total < 64 * 1024**3: | |
| pipe.enable_attention_slicing() | |
| if TORCH_COMPILE: | |
| pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) | |
| pipe.vae = torch.compile(pipe.vae, mode="reduce-overhead", fullgraph=True) | |
| pipe(prompt="warmup", num_inference_steps=1, guidance_scale=8.0) | |
| # Load LCM LoRA | |
| pipe.load_lora_weights( | |
| "lcm-sd/lcm-sdxl-lora", | |
| weight_name="lcm_sdxl_lora.safetensors", | |
| adapter_name="lcm", | |
| token=HF_TOKEN, | |
| ) | |
| compel_proc = Compel( | |
| tokenizer=[pipe.tokenizer, pipe.tokenizer_2], | |
| text_encoder=[pipe.text_encoder, pipe.text_encoder_2], | |
| returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, | |
| requires_pooled=[False, True], | |
| ) | |
| def predict( | |
| prompt, guidance, steps, seed=1231231, progress=gr.Progress(track_tqdm=True) | |
| ): | |
| generator = torch.manual_seed(seed) | |
| prompt_embeds, pooled_prompt_embeds = compel_proc(prompt) | |
| results = pipe( | |
| prompt_embeds=prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| generator=generator, | |
| num_inference_steps=steps, | |
| guidance_scale=guidance, | |
| width=1024, | |
| height=1024, | |
| # original_inference_steps=params.lcm_steps, | |
| output_type="pil", | |
| ) | |
| nsfw_content_detected = ( | |
| results.nsfw_content_detected[0] | |
| if "nsfw_content_detected" in results | |
| else False | |
| ) | |
| if nsfw_content_detected: | |
| raise gr.Error("NSFW content detected.") | |
| return results.images[0] | |
| css = """ | |
| #container{ | |
| margin: 0 auto; | |
| max-width: 50rem; | |
| } | |
| #intro{ | |
| max-width: 32rem; | |
| text-align: center; | |
| margin: 0 auto; | |
| } | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Column(elem_id="container"): | |
| gr.Markdown( | |
| """# Ultra-Fast SDXL with LoRAs borrowed from Latent Consistency Models | |
| """, | |
| elem_id="intro", | |
| ) | |
| with gr.Row(): | |
| with gr.Row(): | |
| prompt = gr.Textbox( | |
| placeholder="Insert your prompt here", scale=5, container=False | |
| ) | |
| generate_bt = gr.Button("Generate", scale=1) | |
| with gr.Accordion("Advanced options", open=False): | |
| guidance = gr.Slider( | |
| label="Guidance", minimum=0.0, maximum=5, value=0.3, step=0.001 | |
| ) | |
| steps = gr.Slider(label="Steps", value=4, minimum=2, maximum=10, step=1) | |
| seed = gr.Slider( | |
| randomize=True, minimum=0, maximum=12013012031030, label="Seed" | |
| ) | |
| image = gr.Image(type="filepath") | |
| inputs = [prompt, guidance, steps, seed] | |
| generate_bt.click(fn=predict, inputs=inputs, outputs=image) | |
| demo.queue() | |
| demo.launch() | |