Tschoui's picture
Migrate application to hugginface
48097f5
raw
history blame
13.8 kB
# Original code from ProtMamba under Apache License 2.0.
#
# Modifications made by Niklas Schmidinger, Lisa Schneckenreiter and Sohvi Luukkonen
# - Extended to training of xlstm and transformer-based models
# - Predefined splits instead of on-the-fly creation
# - Option to overwrite config parameters from the command line
# - wandb logging
import argparse
import os
import torch
from omegaconf import OmegaConf
from transformers import TrainingArguments
from protxlstm.dataloaders import ProteinMemmapDataset, ProteinDataCollator
from protxlstm.models.xlstm import xLSTMConfig, xLSTMLMHeadModel
from protxlstm.models.llama import TransformerConfig, TransformerLMHeadModel
from protxlstm.trainer import ProtTrainer, EarlyStoppingCallback, get_last_checkpoint
from protxlstm.utils import (
AA_TO_ID,
compute_metrics,
is_zero_rank,
parse_override_args,
print_number_of_parameters,
print_zero_rank,
set_optimizer_and_scheduler,
setup_wandb,
load_model,
)
def run(config):
"""
Run training loop.
Args:
config (dict): dictionary with the configuration parameters.
"""
if config.model_type == 'llama':
pe_kwargs = {
'max_position_embeddings' : config["model"]["max_position_embeddings"],
'add_position_ids' : '1d',
}
elif config.model_type == 'mamba':
from protxlstm.models.mamba import MambaConfig, MambaLMHeadModelSafe, MambaLMHeadModelwithPosids, MambaLMHeadModelwith2DPosids
pe_kwargs = {
'max_position_embeddings' : config["model"]["max_position_embeddings"],
'max_seq_position_embeddings' : config["model"]["max_seq_position_embeddings"],
'add_position_ids' : config["model"]["add_position_ids"]
}
else:
position_embeddings = config["model"]["position_embeddings"]
assert position_embeddings in ["none", "abs_1d", "abs_2d", "rot_1d", "rot_2d"]
if position_embeddings != "none":
position_embeddings = position_embeddings.split("_")[-1]
pe_kwargs = {
'max_position_embeddings' : config["model"]["max_position_embeddings"],
'max_seq_position_embeddings' : config["model"]["max_seq_position_embeddings"],
'add_position_ids' : position_embeddings
}
# Setup WandB
wandb_run_name = setup_wandb(config)
# Load datasets
dataset_params = {
"msa_memmap_path": config["msa_memmap_path"],
"msa_memmap_meta_path": config["msa_memmap_meta_path"],
"sample": config["sample_sequences"],
"max_msa_len": config["max_msa_len"],
"reverse": False,
"seed": config["seed_sequence_sampling"],
"troubleshoot": False,
"fim_strategy": config["fim_strategy"],
"always_mask": config["always_mask"],
**pe_kwargs,
}
train_dataset = ProteinMemmapDataset(subset_path=config["train_set"], **dataset_params)
valid_dataset = ProteinMemmapDataset(subset_path=config["valid_set"], **dataset_params)
train_eval_dataset = ProteinMemmapDataset(subset_path=config["train_eval_set"], **dataset_params)
print(f'Train set size: {len(train_dataset)} Train eval set size: {len(train_eval_dataset)} Valid set size: {len(valid_dataset)}')
assert (
len(AA_TO_ID) == config["model"]["vocab_size"]
), f"Vocab size in the config file does not match the one in the code. I should be {len(AA_TO_ID)}"
# Create data collator for batched training
data_collator = ProteinDataCollator(max_sequence_length=config["max_msa_len"])
# Check datatypes
if config["dtype"] == "float32":
dtype = torch.float32
elif config["dtype"] == "bfloat16":
dtype = torch.bfloat16
else:
raise ValueError("dtype must be either float32 or bfloat16")
# Initialize model
if config.model_type == 'xlstm':
# Load model for finetuning
if config.finetune_model_path:
# These fields are updated in the config loaded from the checkpoint
config_update_kwargs = {
"mlstm_backend": config["model"]["mlstm_block"]["mlstm"]["backend"],
"mlstm_chunksize": config["model"]["mlstm_block"]["mlstm"]["chunk_size"],
"checkpoint_blocks": config["model"]["checkpoint_blocks"],
"rope_base_frequency": config["model"]["rope_base_frequency"]
}
model = load_model(
config.finetune_model_path,
model_class=xLSTMLMHeadModel,
device="cuda",
dtype=dtype,
**config_update_kwargs
)
else:
# Create new mode
xlstm_config = xLSTMConfig().init_from_dict(config["model"])
model = xLSTMLMHeadModel(xlstm_config)
elif config.model_type == 'mamba':
_mamba_model = {
"none": MambaLMHeadModelSafe,
"1d": MambaLMHeadModelwithPosids,
"2d": MambaLMHeadModelwith2DPosids,
}
Mamba = _mamba_model[config['model']["add_position_ids"]]
# Load model for finetuning
if config.finetune_model_path:
model = load_model(
config.finetune_model_path,
model_class=Mamba,
device="cuda",
dtype=dtype,
checkpoint_mixer=config["checkpoint_mixer"],
)
else:
# Create new mode
mamba_config = MambaConfig(d_model=config['model']["d_model"],
n_layer=config['model']["n_layer"],
vocab_size=config['model']["vocab_size"],
residual_in_fp32=config['model']["residual_in_fp32"])
model = Mamba(mamba_config, dtype=dtype, checkpoint_mixer=config['model']["checkpoint_mixer"])
elif config.model_type == 'llama':
llama_config = TransformerConfig(
d_model=config["model"]["d_model"],
n_layer=config["model"]["n_layer"],
n_heads=config["model"]["n_heads"],
n_kv_heads=config["model"]["n_kv_heads"],
bidirectional=config["model"]["bidirectional"],
hidden_dim=config["model"]["hidden_dim"],
multiple_of=config["model"]["multiple_of"],
norm_eps=config["model"]["norm_eps"],
max_length=config["model"]["max_length"],
vocab_size=config["model"]["vocab_size"],
dropout=config["model"]["dropout"],
max_position_embeddings=config["model"]["max_position_embeddings"],
rope_base_frequency=config["model"]["rope_base_frequency"],
)
model = TransformerLMHeadModel(llama_config)
else:
raise ValueError(f"Unsupported model_type: {config.model_type}. Expected 'xlstm', 'mamba', or 'llama'.")
# TODO: Improve what we want print
if is_zero_rank():
print_number_of_parameters(model)
print_zero_rank(f"dtype: {config['dtype']}")
print_zero_rank(f"Epochs: {config['num_epochs']}")
print_zero_rank(f"Batch size per GPU: {config['batch_size']}")
print_zero_rank(f"Gradient accumulation steps: {config['gradient_accumulation_steps']}")
eff_batch_size = config["batch_size"] * config["gradient_accumulation_steps"]
nr_gpus = torch.cuda.device_count()
print_zero_rank(f"GPUS: {nr_gpus}")
eff_batch_size *= nr_gpus
print_zero_rank(f"Effective batch size: {eff_batch_size}")
print_zero_rank(
f"Steps per training epoch: {len(train_dataset) // config['batch_size']}, eff. steps: {len(train_dataset) // eff_batch_size}"
)
print_zero_rank(f"Steps per evaluation epoch: {len(valid_dataset) // config['batch_size']}")
print_zero_rank(f"Max MSA length: {config['max_msa_len']}")
ev_epochs = round(
config["eval_steps"] * config["batch_size"] / len(train_dataset), 3
)
print_zero_rank(
f"Evaluation every {config['eval_steps']} steps, i.e. {ev_epochs} epochs. Effectively every {config['eval_steps']*config['gradient_accumulation_steps']} steps, i.e. {ev_epochs*config['gradient_accumulation_steps']} epochs."
)
if config.model_type == 'xlstm' and config["model"]["checkpoint_blocks"]:
print_zero_rank("Using gradient checkpointing")
if config["compute_only_fim_loss"]:
print_zero_rank("Computing only FIM loss for training")
# Training callbacks
es_callback = EarlyStoppingCallback(
train_path=config["output_dir"] + '/' + wandb_run_name, config=config
)
callbacks = [es_callback]
# Optimizer and Schedulers
optimizer, scheduler = set_optimizer_and_scheduler(
config,
len(train_dataset),
model.parameters()
)
# Find checkpoint if available
last_checkpoint = None
if config.finetune_model_path is None:
path = os.path.join(config["output_dir"], wandb_run_name)
if os.path.exists(path):
last_checkpoint = get_last_checkpoint(path)
if last_checkpoint is None:
print_zero_rank("No checkpoint found, starting training from scratch.")
else:
print_zero_rank(f"Resuming training from the last checkpoint: {last_checkpoint}")
# Create trainer
trainer = ProtTrainer(
model=model,
train_dataset=train_dataset,
eval_dataset={"valid": valid_dataset, "train": train_eval_dataset},
optimizers=(optimizer, scheduler),
args=TrainingArguments(
run_name=wandb_run_name,
local_rank=int(os.getenv('LOCAL_RANK', '0')),
learning_rate=config["learning_rate"],
num_train_epochs=config["num_epochs"],
per_device_train_batch_size=config["batch_size"],
per_device_eval_batch_size=config["batch_size"],
gradient_accumulation_steps=config["gradient_accumulation_steps"],
eval_accumulation_steps=config["eval_accumulation_steps"],
eval_strategy="steps",
max_grad_norm=config["max_grad_norm"],
bf16=config["dtype"] == "bfloat16",
dataloader_num_workers=32,
logging_steps=config["logging_steps"],
eval_steps=config["eval_steps"],
save_steps=config["save_steps"],
output_dir=config["output_dir"] + '/' + wandb_run_name,
logging_dir=config["output_dir"] + '/' + wandb_run_name,
report_to="wandb" if is_zero_rank() else None,
log_on_each_node=False,
overwrite_output_dir=False,
push_to_hub=False,
label_names=["labels"],
),
compute_only_fim_loss=config["compute_only_fim_loss"],
data_collator=data_collator,
compute_metrics=compute_metrics,
callbacks=callbacks,
)
# Train model
while True:
if last_checkpoint is None and trainer.state.global_step == 0:
eval_results = trainer.evaluate()
print_zero_rank(
f">>> Initial validation perplexity: {eval_results['eval_valid_perplexity/batch']:.2f}"
)
else:
print_zero_rank(f"Resuming training from the last checkpoint: {last_checkpoint}")
# Train
trainer.train(resume_from_checkpoint=last_checkpoint)
# Break training when the number of epochs is reached
if (
not es_callback.should_restart
or trainer.state.epoch >= config["num_epochs"]
):
eval_results = trainer.evaluate()
print_zero_rank(
f">>> Final Perplexity: {eval_results['eval_valid_perplexity/batch']:.2f}"
)
break
# If the training was interrupted because of a loss spike, restart from the last checkpoint
last_checkpoint = es_callback.checkpoint_path
return trainer
if __name__ == "__main__":
# Default configuration file paths
default_model_config = "configs/xlstm_default_config.yaml"
default_train_config = "configs/train_default_config.yaml"
parser = argparse.ArgumentParser(
description="Train or finetune a model with the provided configuration."
)
parser.add_argument(
"--model_config_path",
type=str,
default=default_model_config,
help=f"Path to the model configuration file (default: {default_model_config})"
)
parser.add_argument(
"--train_config_path",
type=str,
default=default_train_config,
help=f"Path to the training and dataset configuration file (default: {default_train_config})"
)
parser.add_argument(
"overrides",
nargs=argparse.REMAINDER,
help="Override configuration values using key=value format.",
)
args = parser.parse_args()
# Check if the default config files exist, or raise an error
if not os.path.exists(args.model_config_path):
raise FileNotFoundError(f"Model config file not found: {args.model_config_path}")
if not os.path.exists(args.train_config_path):
raise FileNotFoundError(f"Train config file not found: {args.train_config_path}")
# Load the model and training configurations
model_config = OmegaConf.load(args.model_config_path)
train_config = OmegaConf.load(args.train_config_path)
# Merge the model and training configurations
config = OmegaConf.merge(model_config, train_config)
# Parse overrides
if args.overrides:
overrides = parse_override_args(args.overrides)
config.merge_with(OmegaConf.create(overrides))
# Run the training/finetuning process
run(config)