Spaces:
Sleeping
Sleeping
File size: 25,958 Bytes
c0612a1 970b7b6 c0612a1 970b7b6 c0612a1 970b7b6 c0612a1 07944e2 970b7b6 55c0a81 29fbcb4 970b7b6 c0612a1 f00417c c0612a1 970b7b6 c0612a1 df891fc 970b7b6 c0612a1 07944e2 c0612a1 970b7b6 c0612a1 970b7b6 c0612a1 970b7b6 c0612a1 970b7b6 c0612a1 970b7b6 c0612a1 3b287b1 c0612a1 3b287b1 c0612a1 3b287b1 c0612a1 3b287b1 c0612a1 3b287b1 c0612a1 3b287b1 c0612a1 970b7b6 c0612a1 970b7b6 c0612a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 |
from huggingface_hub import login, snapshot_download, hf_hub_download
from typing import Optional, Tuple, Dict, Any
from transformers import TrOCRProcessor
from datetime import datetime
from pathlib import Path
import gradio as gr
import numpy as np
import onnxruntime
import tempfile
import logging
import torch
import time
import json
import os
from plotting_functions import PlotHTR
from segment_image import SegmentImage
from onnx_text_recognition import TextRecognition
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.StreamHandler() # Explicit stdout handler for HF Spaces
]
)
logger = logging.getLogger(__name__)
# Log startup info for debugging in HF Spaces
logger.info("="*50)
logger.info("HTR Application Starting")
logger.info(f"Python version: {os.sys.version}")
logger.info(f"Running on Hugging Face Spaces: {os.getenv('SPACE_ID', 'Local')}")
logger.info("="*50)
# Configuration from environment variables
class Config:
"""Application configuration from environment variables."""
HF_TOKEN = os.getenv("HF_TOKEN")
SEGMENTATION_MAX_SIZE = 768
RECOGNITION_BATCH_SIZE = 10
SEGMENTATION_CONFIDENCE_THRESHOLD = 0.15
SEGMENTATION_LINE_PRECENTAGE_THRESHOLD = 7e-05
SEGMENTATION_REGION_PRECENTAGE_THRESHOLD = 7e-05
SEGMENTATION_LINE_IOU = 0.3
SEGMENTATION_REGION_IOU = 0.3
SEGMENTATION_LINE_OVERLAP_THRESHOLD = 0.5
SEGMENTATION_REGION_OVERLAP_THRESHOLD = 0.5
ALLOWED_SOURCES = ("https://astia.narc.fi, /tmp/gradio")
# Model paths
TROCR_MODEL_REPO = "Kansallisarkisto/multicentury-htr-model-small-onnx"
SEGMENTATION_MODEL_REPO = "Kansallisarkisto/rfdetr_textline_textregion_detection_model"
SEGMENTATION_MODEL_FILE = "rfdetr_text_seg_model_202510.pth"
# Login to HuggingFace if token is available
if Config.HF_TOKEN:
try:
login(token=Config.HF_TOKEN, add_to_git_credential=True)
logger.info("✓ Logged in to HuggingFace")
except Exception as e:
logger.warning(f"Failed to login to HuggingFace: {e}")
def download_models() -> Tuple[str, str]:
"""
Download required models from HuggingFace Hub.
Returns:
Tuple of (text_recognition_model_path, segmentation_model_path)
Raises:
RuntimeError: If model download fails
"""
try:
logger.info("Downloading text recognition model...")
trocr_path = snapshot_download(repo_id=Config.TROCR_MODEL_REPO)
logger.info(f"✓ Text recognition model downloaded to {trocr_path}")
logger.info("Downloading segmentation model...")
seg_path = hf_hub_download(
repo_id=Config.SEGMENTATION_MODEL_REPO,
filename=Config.SEGMENTATION_MODEL_FILE
)
logger.info(f"✓ Segmentation model downloaded to {seg_path}")
return trocr_path, seg_path
except Exception as e:
logger.error(f"Failed to download models: {e}")
raise RuntimeError(f"Model download failed: {e}")
# Download models
TROCR_MODEL_PATH, SEGMENTATION_MODEL_PATH = download_models()
# Log CUDA availability
logger.info(f"CUDA available: {torch.cuda.is_available()}")
if torch.cuda.is_available():
logger.info(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
class HTRPipeline:
"""
Handwritten Text Recognition pipeline combining segmentation and recognition.
This class manages the initialization and execution of document segmentation
and text recognition models.
"""
def __init__(self,
segmentation_model_path: str,
recognition_model_path: str,
segmentation_max_size: int = 768,
recognition_batch_size: int = 10,
segmentation_confidence_threshold: float = 0.15,
segmentation_line_percentage_threshold: float = 7e-05,
segmentation_region_percentage_threshold: float = 7e-05,
segmentation_line_iou: float = 0.3,
segmentation_region_iou: float = 0.3,
segmentation_line_overlap_threshold: float = 0.5,
segmentation_region_overlap_threshold: float = 0.5
):
"""
Initialize HTR pipeline with segmentation and recognition models.
Args:
segmentation_model_path: Path to segmentation model weights
recognition_model_path: Path to recognition model directory
segmentation_max_size: Maximum image dimension for segmentation
recognition_batch_size: Batch size for text recognition
segmentation_confidence_threshold: Minimum confidence score for detections
segmentation_line_percentage_threshold: Minimum polygon area as fraction of image area for lines
segmentation_region_percentage_threshold: Minimum polygon area as fraction of image area for regions
segmentation_line_iou: IoU threshold for merging overlapping line polygons
segmentation_region_iou: IoU threshold for merging overlapping region polygons
segmentation_line_overlap_threshold: Area overlap ratio threshold for merging lines
segmentation_region_overlap_threshold: Area overlap ratio threshold for merging regions
"""
self.segmenter = self._init_segmenter(segmentation_model_path,
segmentation_max_size,
segmentation_confidence_threshold,
segmentation_line_percentage_threshold,
segmentation_region_percentage_threshold,
segmentation_line_iou,
segmentation_region_iou,
segmentation_line_overlap_threshold,
segmentation_region_overlap_threshold
)
self.recognizer = self._init_recognizer(recognition_model_path, recognition_batch_size)
self.plotter = PlotHTR()
if self.segmenter is None or self.recognizer is None:
raise RuntimeError("Failed to initialize HTR pipeline components")
def _init_segmenter(self,
model_path: str,
max_size: int,
segmentation_confidence_threshold: float,
segmentation_line_percentage_threshold: float,
segmentation_region_percentage_threshold: float,
segmentation_line_iou: float,
segmentation_region_iou: float,
segmentation_line_overlap_threshold: float,
segmentation_region_overlap_threshold: float
) -> Optional[SegmentImage]:
"""
Initialize document segmentation model.
Args:
model_path: Path to segmentation model
max_size: Maximum dimension for image preprocessing
segmentation_confidence_threshold: Minimum confidence score for detections
segmentation_line_percentage_threshold: Minimum polygon area as fraction of image area for lines
segmentation_region_percentage_threshold: Minimum polygon area as fraction of image area for regions
segmentation_line_iou: IoU threshold for merging overlapping line polygons
segmentation_region_iou: IoU threshold for merging overlapping region polygons
segmentation_line_overlap_threshold: Area overlap ratio threshold for merging lines
segmentation_region_overlap_threshold: Area overlap ratio threshold for merging regions
Returns:
Initialized SegmentImage instance or None if initialization fails
"""
try:
segmenter = SegmentImage(
model_path=model_path,
max_size=max_size,
confidence_threshold=segmentation_confidence_threshold,
line_percentage_threshold=segmentation_line_percentage_threshold,
region_percentage_threshold=segmentation_region_percentage_threshold,
line_iou=segmentation_line_iou,
region_iou=segmentation_region_iou,
line_overlap_threshold=segmentation_line_overlap_threshold,
region_overlap_threshold=segmentation_region_overlap_threshold
)
logger.info("✓ Segmentation model initialized")
return segmenter
except Exception as e:
logger.error(f"Failed to initialize segmentation model: {e}")
return None
def _init_recognizer(self, model_path: str, batch_size: int) -> Optional[TextRecognition]:
"""
Initialize text recognition model.
Args:
model_path: Path to recognition model directory
batch_size: Number of text lines to process in parallel
Returns:
Initialized TextRecognition instance or None if initialization fails
"""
try:
recognizer = TextRecognition(
model_path=model_path,
device='cuda:0' if torch.cuda.is_available() else 'cpu',
batch_size=batch_size
)
logger.info("✓ Text recognition model initialized")
return recognizer
except Exception as e:
logger.error(f"Failed to initialize text recognition model: {e}")
return None
def _merge_lines(self, segment_predictions: list) -> list:
"""
Merge text lines from all regions into a single list.
Args:
segment_predictions: List of region dictionaries containing line data
Returns:
Flat list of all text line polygons
"""
return [line for region in segment_predictions for line in region.get('lines', [])]
def process_image(self, image) -> Dict[str, Any]:
"""
Process a document image through the complete HTR pipeline.
Args:
image: PIL Image object or numpy array
Returns:
Dictionary containing:
- success: bool indicating if processing succeeded
- segment_predictions: List of detected regions and lines
- text_predictions: List of recognized text strings
- processing_time: Time taken in seconds
- error: Error message if success is False
"""
start_time = time.time()
result = {
'success': False,
'segment_predictions': None,
'text_predictions': None,
'processing_time': 0.0,
'error': None
}
try:
# Convert PIL image to numpy if needed
if not isinstance(image, np.ndarray):
image = np.array(image.convert('RGB'))
# Run segmentation
segment_predictions = self.segmenter.get_segmentation(image)
if not segment_predictions:
result['error'] = "No text lines detected in the image"
result['processing_time'] = time.time() - start_time
return result
logger.info("✓ Segmentation completed")
# Extract all lines for recognition
img_lines = self._merge_lines(segment_predictions)
# Run text recognition
text_predictions = self.recognizer.process_lines(img_lines, image)
logger.info("✓ Text recognition completed")
result['success'] = True
result['segment_predictions'] = segment_predictions
result['text_predictions'] = text_predictions
except Exception as e:
logger.error(f"Error during image processing: {e}", exc_info=True)
result['error'] = str(e)
finally:
result['processing_time'] = time.time() - start_time
return result
def is_allowed_source(file_path: Optional[str]) -> bool:
"""
Check if a file path is from an allowed source.
This security measure prevents processing of files from untrusted sources,
limiting uploads to specific domains and temporary directories.
Args:
file_path: Path to the uploaded file
Returns:
True if source is allowed, False otherwise
"""
if not file_path:
logger.warning("No file path provided")
return False
# Check if path starts with any allowed source
is_allowed = any(file_path.startswith(source) for source in Config.ALLOWED_SOURCES)
if not is_allowed:
logger.warning(f"File path not allowed: {file_path}")
return is_allowed
async def extract_filepath_from_request(request: gr.Request) -> Optional[str]:
"""
Extract file path from Gradio request object.
Args:
request: Gradio Request object
Returns:
File path string or None if not found
"""
try:
body = await request.body()
if not body:
return None
body_str = body.decode('utf-8')
body_json = json.loads(body_str)
# Navigate through Gradio's request structure
if 'data' in body_json and isinstance(body_json['data'], list):
for item in body_json['data']:
if isinstance(item, dict) and 'path' in item:
file_path = item['path']
logger.info(f"Extracted file path: {file_path}")
return file_path
return None
except json.JSONDecodeError:
logger.warning("Request body is not valid JSON")
return None
except Exception as e:
logger.error(f"Error extracting file path: {e}")
return None
# Initialize HTR pipeline
try:
pipeline = HTRPipeline(
segmentation_model_path=SEGMENTATION_MODEL_PATH,
recognition_model_path=TROCR_MODEL_PATH,
segmentation_max_size=Config.SEGMENTATION_MAX_SIZE,
recognition_batch_size=Config.RECOGNITION_BATCH_SIZE,
segmentation_confidence_threshold = Config.SEGMENTATION_CONFIDENCE_THRESHOLD,
segmentation_line_percentage_threshold = Config.SEGMENTATION_LINE_PRECENTAGE_THRESHOLD,
segmentation_region_percentage_threshold = Config.SEGMENTATION_REGION_PRECENTAGE_THRESHOLD,
segmentation_line_iou = Config.SEGMENTATION_LINE_IOU,
segmentation_region_iou = Config.SEGMENTATION_REGION_IOU,
segmentation_line_overlap_threshold = Config.SEGMENTATION_LINE_OVERLAP_THRESHOLD,
segmentation_region_overlap_threshold = Config.SEGMENTATION_REGION_OVERLAP_THRESHOLD
)
logger.info("✓ HTR Pipeline initialized successfully")
except Exception as e:
logger.error(f"Failed to initialize HTR pipeline: {e}")
raise
def create_demo() -> gr.Blocks:
"""
Create and configure the Gradio demo interface.
Returns:
Configured Gradio Blocks interface
"""
with gr.Blocks(
theme=gr.themes.Monochrome(),
title="Multicentury HTR Demo"
) as demo:
gr.Image("logo.png",
width=200,
height=100,
show_label=False,
show_download_button=False,
show_fullscreen_button=False,
container=False,
interactive=False
)
gr.Markdown("# 📜 Multicentury Handwritten Text Recognition")
with gr.Tabs():
# English documentation
with gr.Tab("English"):
gr.Markdown("""
## About this demo
This HTR (Handwritten Text Recognition) pipeline combines two machine learning models:
1. **Text Region & Line Detection**: Identifies text regions and individual lines in document images
2. **Handwritten Text Recognition**: Transcribes the detected text lines
The models have been trained by the National Archives of Finland in autumn 2025 using handwritten documents
from the 16th to 20th centuries.
### How to use
1. Upload an image in the **Text Content** tab
2. Click **Process Image**
3. View results: transcribed text, detected regions, and text lines
### To obtain best results
- Use high-quality scans
- Ensure good contrast between text and background
- Note that regular document layouts work best
⚠️ **Note**: This is a demo application. 24/7 availability is not guaranteed.
""")
# Finnish documentation
with gr.Tab("Suomeksi"):
gr.Markdown("""
## Tietoa demosta
Käsialantunnistusputki sisältää kaksi koneoppimismallia:
1. **Tekstialueiden ja -rivien tunnistus**: Tunnistaa tekstialueet ja yksittäiset rivit dokumenttikuvista
2. **Käsinkirjoitetun tekstin tunnistus**: Litteroi tunnistetut tekstirivit
Mallit on koulutettu Kansallisarkistossa syksyllä 2025 käsinkirjoitetulla aineistolla,
joka ajoittuu 1500-luvulta 1900-luvulle.
### Käyttöohje
1. Lataa kuva **Text Content** -välilehdellä
2. Paina **Process Image** -painiketta
3. Tarkastele tuloksia: litteroitu teksti, tunnistetut alueet ja tekstirivit
### Parhaat tulokset saat kun
- Käytät korkealaatuisia skannauksia
- Varmistat hyvän kontrastin tekstin ja taustan välillä
- Huomioit että monimutkaiset rakenteet (esim. taulukot) voivat vaikeuttaa tunnistusta
⚠️ **Huom**: Tämä on demosovellus. Ympärivuorokautista toimivuutta ei luvata.
""")
gr.Markdown("---")
with gr.Tabs():
with gr.Tab("📄 Text Content"):
with gr.Row():
with gr.Column(scale=1):
input_img = gr.Image(
label="Input Image",
type="pil",
height=400
)
with gr.Row():
process_btn = gr.Button(
"🚀 Process Image",
variant="primary",
size="lg"
)
clear_btn = gr.ClearButton(
components=[input_img],
value="🗑️ Clear"
)
with gr.Column(scale=1):
textbox = gr.Textbox(
label="Recognized Text",
lines=15,
max_lines=30,
show_copy_button=True,
placeholder="Processed text will appear here..."
)
download_text_file = gr.File(
label="💾 Download Text",
visible=False,
interactive=False
)
processing_time = gr.Markdown(
"",
elem_classes="processing-time"
)
status_message = gr.Markdown(
"",
elem_classes="error-message"
)
with gr.Tab("🗺️ Text Regions"):
region_img = gr.Image(
label="Detected Text Regions",
type="numpy",
height=500
)
region_info = gr.Markdown("Upload and process an image to see detected regions")
with gr.Tab("📝 Text Lines"):
line_img = gr.Image(
label="Detected Text Lines",
type="numpy",
height=500
)
line_info = gr.Markdown("Upload and process an image to see detected text lines")
async def process_pipeline(image, request: gr.Request):
"""
Main processing function for the Gradio interface.
Validates input, checks file source, runs HTR pipeline, and formats results.
"""
# Reset outputs
outputs = {
region_img: None,
line_img: None,
textbox: "",
processing_time: "",
status_message: "",
download_text_file: gr.update(visible=False, value=None),
region_info: "",
line_info: ""
}
# Check file source (security measure)
if request:
file_path = await extract_filepath_from_request(request)
if file_path and not is_allowed_source(file_path):
outputs[status_message] = "❌ **Error**: File source not allowed for security reasons"
yield tuple(outputs.values())
return
# Show processing status
outputs[status_message] = "⏳ Processing image..."
yield tuple(outputs.values())
# Run HTR pipeline
result = pipeline.process_image(image)
# Format processing time
time_str = f"⏱️ Processing time: {result['processing_time']:.2f}s"
outputs[processing_time] = time_str
if not result['success']:
error = result['error'] or "Unknown error occurred"
outputs[status_message] = f"❌ **Error**: {error}"
yield tuple(outputs.values())
return
# Process successful results
try:
segment_predictions = result['segment_predictions']
text_predictions = result['text_predictions']
# Generate visualizations
region_plot = pipeline.plotter.plot_regions(segment_predictions, image)
line_plot = pipeline.plotter.plot_lines(segment_predictions, image)
# Format text output
recognized_text = "\n".join(text_predictions) if text_predictions else ""
# Update outputs
outputs[region_img] = region_plot
outputs[line_img] = line_plot
outputs[textbox] = recognized_text
outputs[status_message] = f"Recognized {len(text_predictions)} text lines"
## Create downloadable text file if text was recognized
if recognized_text:
# Create temporary file with proper filename
temp_dir = tempfile.gettempdir()
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"htr_result_{timestamp}.txt"
filepath = os.path.join(temp_dir, filename)
# Write text to file
with open(filepath, 'w', encoding='utf-8') as f:
f.write(recognized_text)
outputs[download_text_file] = gr.update(visible=True, value=filepath)
# Update info sections
num_regions = len(segment_predictions)
outputs[region_info] = f"Detected **{num_regions}** text region(s)"
outputs[line_info] = f"Detected **{len(text_predictions)}** text line(s)"
except Exception as e:
logger.error(f"Error formatting results: {e}", exc_info=True)
outputs[status_message] = f"❌ **Error**: Failed to format results - {e}"
yield tuple(outputs.values())
# Connect button to processing function
process_btn.click(
fn=process_pipeline,
inputs=[input_img],
outputs=[
region_img,
line_img,
textbox,
processing_time,
status_message,
download_text_file,
region_info,
line_info
],
api_name=False # Disable API endpoint for security
)
return demo
# Create and launch demo
if __name__ == "__main__":
demo = create_demo()
demo.queue(
max_size=30, # 30 users can queue without being rejected
default_concurrency_limit=1 # Only one image processes at a time
)
demo.launch(
show_error=True,
max_threads=2 # Minimal threads: 1 for processing + 1 for queue management
) |