News.ai / app.py
PRANJAL KAR
resolve1
e70c4cd
import os
os.environ["TRANSFORMERS_CACHE"] = "/tmp/transformers_cache"
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
import torch
model = "tiiuae/falcon-180b-chat"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
device_map="auto",
)
def generate_headlines(topic):
sequences = pipeline(
f"Create at most 5 headlines that highlight {topic}. The headlines should be concise, attention-grabbing, and suitable for use in a news video.",
max_length=200,
do_sample=True,
top_k=10,
num_return_sequences=5,
eos_token_id=tokenizer.eos_token_id,
)
headlines = [seq['generated_text'] for seq in sequences]
return "\n".join(headlines)
iface = gr.Interface(
fn=generate_headlines,
inputs=gr.inputs.Textbox(placeholder="Enter the topic"),
outputs="text",
examples=[["Climate Change"], ["AI Innovations"], ["Space Exploration"]]
)
iface.launch()