File size: 28,420 Bytes
cb41d0d
 
 
 
 
 
 
 
 
 
 
 
a19568b
 
76f55e4
 
 
 
 
cb41d0d
 
76f55e4
cb41d0d
 
a19568b
 
 
 
 
 
 
 
 
 
 
 
 
 
f0aab4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb41d0d
76f55e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb41d0d
76f55e4
 
a19568b
 
 
 
 
 
 
76f55e4
 
 
 
 
 
 
 
 
a19568b
76f55e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a19568b
76f55e4
 
 
 
 
 
a19568b
 
 
 
 
76f55e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a19568b
 
76f55e4
7dc4cfb
 
a19568b
 
 
 
 
 
 
 
 
 
 
76f55e4
 
a19568b
 
76f55e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a19568b
 
76f55e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a19568b
 
76f55e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a19568b
 
 
76f55e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a19568b
76f55e4
 
 
 
 
 
 
 
a19568b
 
76f55e4
a19568b
 
 
 
76f55e4
 
 
a19568b
76f55e4
 
a19568b
76f55e4
a19568b
 
76f55e4
 
 
 
 
 
a19568b
 
 
76f55e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76d7cc4
a19568b
76f55e4
7dc4cfb
 
 
 
a19568b
 
 
 
 
 
76f55e4
 
 
 
 
 
 
 
 
 
 
 
 
 
a19568b
76f55e4
 
 
a19568b
 
76f55e4
 
a19568b
76f55e4
 
 
 
 
 
a19568b
76f55e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a19568b
 
76f55e4
a19568b
76f55e4
a19568b
76f55e4
 
 
 
 
a19568b
76f55e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a19568b
 
76f55e4
 
a19568b
76f55e4
 
 
 
 
 
 
 
 
 
a19568b
76f55e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb41d0d
a19568b
76f55e4
 
 
 
 
a19568b
 
 
76f55e4
 
a19568b
76f55e4
 
 
 
a19568b
 
76f55e4
 
 
 
a19568b
 
 
 
 
 
cb41d0d
 
a19568b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
import streamlit as st
import pandas as pd
import numpy as np
import requests
from bs4 import BeautifulSoup
import folium
from streamlit_folium import folium_static
import plotly.express as px
import plotly.graph_objects as go
from datetime import datetime, timedelta
import json
from io import StringIO
import streamlit.components.v1 as components
import base64
from sklearn.ensemble import RandomForestRegressor
from prophet import Prophet
import tensorflow as tf
from xgboost import XGBRegressor
import seaborn as sns

# Page configuration
st.set_page_config(layout="wide", page_title="Pakistan Climate & Disaster Monitor", page_icon="🌍")

class DataCollector:
    def __init__(self):
        self.cities = {
            'Islamabad': {'lat': 33.7294, 'lon': 73.0931},
            'Karachi': {'lat': 24.8607, 'lon': 67.0011},
            'Lahore': {'lat': 31.5204, 'lon': 74.3587},
            'Peshawar': {'lat': 34.0151, 'lon': 71.5249},
            'Quetta': {'lat': 30.1798, 'lon': 66.9750},
            'Multan': {'lat': 30.1575, 'lon': 71.5249},
            'Faisalabad': {'lat': 31.4504, 'lon': 73.1350},
            'Rawalpindi': {'lat': 33.6007, 'lon': 73.0679},
            'Gwadar': {'lat': 25.1216, 'lon': 62.3254},
            'Hyderabad': {'lat': 25.3960, 'lon': 68.3578}
        }

    def fetch_weather_data(self):
        """Fetch weather data from OpenMeteo"""
        weather_data = []
        for city, coords in self.cities.items():
            try:
                url = f"https://api.open-meteo.com/v1/forecast?latitude={coords['lat']}&longitude={coords['lon']}&hourly=temperature_2m,relativehumidity_2m,precipitation,windspeed_10m&daily=temperature_2m_max,temperature_2m_min,precipitation_sum&timezone=auto&past_days=7"
                response = requests.get(url)
                data = response.json()
                
                # Hourly data
                hourly_df = pd.DataFrame({
                    'datetime': pd.to_datetime(data['hourly']['time']),
                    'temperature': data['hourly']['temperature_2m'],
                    'humidity': data['hourly']['relativehumidity_2m'],
                    'precipitation': data['hourly']['precipitation'],
                    'wind_speed': data['hourly']['windspeed_10m']
                })
                
                # Daily data
                daily_df = pd.DataFrame({
                    'date': pd.to_datetime(data['daily']['time']),
                    'temp_max': data['daily']['temperature_2m_max'],
                    'temp_min': data['daily']['temperature_2m_min'],
                    'precipitation_sum': data['daily']['precipitation_sum']
                })
                
                weather_data.append({
                    'city': city,
                    'hourly': hourly_df,
                    'daily': daily_df,
                    'coords': coords
                })
            except Exception as e:
                st.error(f"Error fetching weather data for {city}: {e}")
                continue
        
        return weather_data if weather_data else None

    def fetch_usgs_earthquake_data(self):
        """Fetch earthquake data from USGS website"""
        try:
            # USGS API endpoint for past month's earthquakes
            url = "https://earthquake.usgs.gov/earthquakes/feed/v1.0/summary/2.5_month.geojson"
            response = requests.get(url)
            data = response.json()
            
            # Filter for Pakistan region
            pakistan_data = {
                "type": "FeatureCollection",
                "features": [
                    feature for feature in data["features"]
                    if 60.878 <= feature["geometry"]["coordinates"][0] <= 77.840
                    and 23.692 <= feature["geometry"]["coordinates"][1] <= 37.097
                ]
            }
            return pakistan_data
        except Exception as e:
            st.error(f"Error fetching earthquake data: {e}")
            return None

    def fetch_air_quality_data(self):
        """Fetch air quality data from OpenMeteo"""
        aqi_data = []
        for city, coords in self.cities.items():
            try:
                url = f"https://air-quality-api.open-meteo.com/v1/air-quality?latitude={coords['lat']}&longitude={coords['lon']}&hourly=pm10,pm2_5,carbon_monoxide,nitrogen_dioxide,ozone&timezone=auto&past_days=7"
                response = requests.get(url)
                data = response.json()
                
                df = pd.DataFrame({
                    'datetime': pd.to_datetime(data['hourly']['time']),
                    'PM10': data['hourly']['pm10'],
                    'PM2.5': data['hourly']['pm2_5'],
                    'CO': data['hourly']['carbon_monoxide'],
                    'NO2': data['hourly']['nitrogen_dioxide'],
                    'O3': data['hourly']['ozone'],
                    'city': city
                })
                aqi_data.append(df)
            except Exception as e:
                st.error(f"Error fetching AQI data for {city}: {e}")
                continue
        
        return pd.concat(aqi_data, ignore_index=True) if aqi_data else None

    def create_ml_features(self, weather_data):
        """Create features for ML predictions"""
        features_df = pd.DataFrame()
        for city_data in weather_data:
            df = city_data['hourly'].copy()
            df['city'] = city_data['city']
            
            # Create time-based features
            df['hour'] = df['datetime'].dt.hour
            df['day'] = df['datetime'].dt.day
            df['month'] = df['datetime'].dt.month
            df['day_of_week'] = df['datetime'].dt.dayofweek
            
            # Create lag features
            df['temp_lag_1'] = df['temperature'].shift(1)
            df['temp_lag_24'] = df['temperature'].shift(24)
            
            # Create rolling means
            df['temp_rolling_mean_6h'] = df['temperature'].rolling(window=6).mean()
            df['temp_rolling_mean_24h'] = df['temperature'].rolling(window=24).mean()
            
            features_df = pd.concat([features_df, df])
        
        return features_df.dropna()

def create_cesium_component(earthquake_data=None, weather_data=None):
    """Enhanced Cesium 3D visualization"""
    cesium_html = """
    <div id="cesiumContainer" style="width: 100%; height: 600px;"></div>
    <script src="https://cesium.com/downloads/cesiumjs/releases/1.95/Build/Cesium/Cesium.js"></script>
    <link href="https://cesium.com/downloads/cesiumjs/releases/1.95/Build/Cesium/Widgets/widgets.css" rel="stylesheet">
    <script>
        Cesium.Ion.defaultAccessToken = 'your-access-token';
        const viewer = new Cesium.Viewer('cesiumContainer', {
            terrainProvider: Cesium.createWorldTerrain(),
            timeline: true,
            animation: true,
            baseLayerPicker: true,
            scene3DOnly: false,
            navigationHelpButton: true,
            navigationInstructionsInitiallyVisible: false,
            selectionIndicator: true,
            infoBox: true
        });

        // Add Pakistan terrain
        viewer.scene.globe.enableLighting = true;
        viewer.scene.globe.terrainExaggeration = 1.5;

        // Add weather visualization
        const weatherEntities = new Cesium.CustomDataSource('Weather');
        viewer.dataSources.add(weatherEntities);
    """
    
    # Add earthquake data if available
    if earthquake_data:
        cesium_html += """
        // Add earthquake visualization
        const earthquakeEntities = new Cesium.CustomDataSource('Earthquakes');
        """
        for eq in earthquake_data['features']:
            coords = eq['geometry']['coordinates']
            mag = eq['properties']['mag']
            cesium_html += f"""
            earthquakeEntities.entities.add({{
                position: Cesium.Cartesian3.fromDegrees({coords[0]}, {coords[1]}, {coords[2]}),
                point: {{
                    pixelSize: {mag * 5},
                    color: Cesium.Color.RED.withAlpha(0.8),
                    outlineColor: Cesium.Color.WHITE,
                    outlineWidth: 2
                }},
                description: `Magnitude: {mag}<br>Depth: {coords[2]} km`
            }});
            """
    
    cesium_html += """
        viewer.camera.flyTo({
            destination: Cesium.Cartesian3.fromDegrees(69.3451, 30.3753, 1000000.0),
            orientation: {
                heading: Cesium.Math.toRadians(0.0),
                pitch: Cesium.Math.toRadians(-45.0),
                roll: 0.0
            }
        });
    </script>
    """
    components.html(cesium_html, height=600)

def train_weather_model(features_df, city):
    """Train ML model for weather predictions"""
    city_data = features_df[features_df['city'] == city].copy()
    
    # Prepare features
    feature_cols = ['hour', 'day', 'month', 'day_of_week', 
                   'temp_lag_1', 'temp_lag_24', 
                   'temp_rolling_mean_6h', 'temp_rolling_mean_24h']
    X = city_data[feature_cols]
    y = city_data['temperature']
    
    # Split data
    split_idx = int(len(X) * 0.8)
    X_train, X_test = X[:split_idx], X[split_idx:]
    y_train, y_test = y[:split_idx], y[split_idx:]
    
    # Train model
    model = XGBRegressor(n_estimators=100)
    model.fit(X_train, y_train)
    
    return model, X_test, y_test

def show_weather_analysis(data_collector):
    st.header("Advanced Weather Analysis 🌀️")
    
    weather_data = data_collector.fetch_weather_data()
    if weather_data:
        selected_city = st.selectbox(
            "Select City",
            options=[data['city'] for data in weather_data]
        )
        
        city_data = next(data for data in weather_data if data['city'] == selected_city)
        
        # Add download button for data
        st.markdown(download_csv(city_data['hourly'], f"{selected_city}_weather_data"), unsafe_allow_html=True)
        
        tabs = st.tabs(["Temperature Analysis", "Precipitation Insights", 
                       "Wind Patterns", "Humidity Trends", "ML Predictions"])
        
        with tabs[0]:
            col1, col2 = st.columns(2)
            with col1:
                # Enhanced temperature visualization
                fig = go.Figure()
                fig.add_trace(go.Scatter(
                    x=city_data['hourly']['datetime'],
                    y=city_data['hourly']['temperature'],
                    name='Temperature',
                    line=dict(color='red', width=2)
                ))
                fig.update_layout(
                    title='Temperature Trend with Range',
                    template='plotly_dark',
                    hovermode='x unified'
                )
                st.plotly_chart(fig, use_container_width=True)
            
            with col2:
                # Temperature distribution
                fig = px.histogram(
                    city_data['hourly'],
                    x='temperature',
                    nbins=30,
                    title='Temperature Distribution'
                )
                st.plotly_chart(fig, use_container_width=True)
        
        with tabs[1]:
            # Enhanced precipitation analysis
            col1, col2 = st.columns(2)
            with col1:
                fig = px.bar(
                    city_data['daily'],
                    x='date',
                    y='precipitation_sum',
                    title='Daily Precipitation',
                    color='precipitation_sum',
                    color_continuous_scale='Blues'
                )
                st.plotly_chart(fig, use_container_width=True)
            
            with col2:
                # Precipitation probability calculation
                precip_prob = (city_data['hourly']['precipitation'] > 0).mean() * 100
                st.metric(
                    "Precipitation Probability",
                    f"{precip_prob:.1f}%",
                    delta=f"{precip_prob - 50:.1f}%"
                )
        
        with tabs[2]:
            # Enhanced wind analysis
            fig = go.Figure()
            fig.add_trace(go.Scatter(
                x=city_data['hourly']['datetime'],
                y=city_data['hourly']['wind_speed'],
                name='Wind Speed',
                line=dict(color='blue', width=2)
            ))
            fig.add_trace(go.Scatter(
                x=city_data['hourly']['datetime'],
                y=city_data['hourly']['wind_speed'].rolling(24).mean(),
                name='24h Moving Average',
                line=dict(color='red', width=2, dash='dash')
            ))
            fig.update_layout(
                title='Wind Speed Analysis',
                template='plotly_dark',
                hovermode='x unified'
            )
            st.plotly_chart(fig, use_container_width=True)
        
        with tabs[3]:
            # Enhanced humidity analysis
            col1, col2 = st.columns(2)
            with col1:
                fig = px.line(
                    city_data['hourly'],
                    x='datetime',
                    y='humidity',
                    title='Humidity Trends',
                    color_discrete_sequence=['green']
                )
                st.plotly_chart(fig, use_container_width=True)
            
            with col2:
                # Humidity comfort zones
                comfort_zones = pd.cut(
                    city_data['hourly']['humidity'],
                    bins=[0, 30, 45, 60, 100],
                    labels=['Dry', 'Comfortable', 'Moderate', 'Humid']
                ).value_counts()
                fig = px.pie(
                    values=comfort_zones.values,
                    names=comfort_zones.index,
                    title='Humidity Comfort Zones'
                )
                st.plotly_chart(fig, use_container_width=True)
        
        with tabs[4]:
            st.subheader("Machine Learning Weather Predictions")
            
            # Prepare data for ML
            features_df = data_collector.create_ml_features(weather_data)
            model, X_test, y_test = train_weather_model(features_df, selected_city)
            
            # Make predictions
            predictions = model.predict(X_test)
            
            # Show predictions vs actual
            fig = go.Figure()
            fig.add_trace(go.Scatter(
                x=X_test.index,
                y=y_test,
                name='Actual Temperature',
                line=dict(color='blue')
            ))
            fig.add_trace(go.Scatter(
                x=X_test.index,
                y=predictions,
                name='Predicted Temperature',
                line=dict(color='red', dash='dash')
            ))
            fig.update_layout(
                title='Temperature Predictions vs Actual',
                template='plotly_dark',
                hovermode='x unified'
            )
            st.plotly_chart(fig, use_container_width=True)
            
            # Model metrics
            mae = np.mean(np.abs(predictions - y_test))
            rmse = np.sqrt(np.mean((predictions - y_test)**2))
            
            col1, col2 = st.columns(2)
            col1.metric("Mean Absolute Error", f"{mae:.2f}Β°C")
            col2.metric("Root Mean Square Error", f"{rmse:.2f}Β°C")

def show_disaster_monitor(data_collector):
    st.header("Advanced Disaster Monitoring System 🚨")
    
    earthquake_data = data_collector.fetch_usgs_earthquake_data()
    
    if earthquake_data:
        # Enhanced 3D visualization
        st.subheader("3D Terrain Analysis")
        create_cesium_component(earthquake_data)
        
        # Advanced earthquake analysis
        st.subheader("Earthquake Analysis Dashboard")
        
        # Create DataFrame for analysis
        eq_df = pd.DataFrame([
            {
                'time': datetime.fromtimestamp(eq['properties']['time']/1000),
                'magnitude': eq['properties']['mag'],
                'location': eq['properties']['place'],
                'depth': eq['geometry']['coordinates'][2],
                'lat': eq['geometry']['coordinates'][1],
                'lon': eq['geometry']['coordinates'][0]
            }
            for eq in earthquake_data['features']
        ])
        
        col1, col2 = st.columns(2)
        
        with col1:
            # Magnitude distribution
            fig = px.histogram(
                eq_df,
                x='magnitude',
                nbins=20,
                title='Earthquake Magnitude Distribution',
                color_discrete_sequence=['red']
            )
            st.plotly_chart(fig, use_container_width=True)
        
        with col2:
            # Depth vs Magnitude scatter
            fig = px.scatter(
                eq_df,
                x='depth',
                y='magnitude',
                title='Depth vs Magnitude',
                color='magnitude',
                size='magnitude',
                color_continuous_scale='Viridis'
            )
            st.plotly_chart(fig, use_container_width=True)
        
        # Time series analysis
        st.subheader("Temporal Analysis")
        eq_df# Time series analysis
        eq_df['date'] = eq_df['time'].dt.date
        daily_counts = eq_df.groupby('date').size().reset_index(name='count')
        
        fig = px.line(
            daily_counts,
            x='date',
            y='count',
            title='Daily Earthquake Frequency',
            line_shape='spline'
        )
        st.plotly_chart(fig, use_container_width=True)
        
        # Risk assessment
        st.subheader("Seismic Risk Assessment")
        risk_zones = folium.Map(location=[30.3753, 69.3451], zoom_start=5)
        
        # Create heatmap layer
        heat_data = [[row['lat'], row['lon'], row['magnitude']] for _, row in eq_df.iterrows()]
        folium.plugins.HeatMap(heat_data).add_to(risk_zones)
        
        # Add fault lines (simplified example)
        fault_lines = {
            'Main Boundary Thrust': [[34.0151, 71.5249], [33.7294, 73.0931]],
            'Chaman Fault': [[30.1798, 66.9750], [25.1216, 62.3254]],
        }
        
        for name, coords in fault_lines.items():
            folium.PolyLine(
                coords,
                color='red',
                weight=2,
                popup=name
            ).add_to(risk_zones)
        
        folium_static(risk_zones)
        
        # Earthquake prediction model
        st.subheader("Seismic Activity Prediction")
        
        # Prepare time series data for prediction
        daily_counts['ds'] = pd.to_datetime(daily_counts['date'])
        daily_counts['y'] = daily_counts['count']
        
        # Train Prophet model
        model = Prophet(yearly_seasonality=True, weekly_seasonality=True)
        model.fit(daily_counts[['ds', 'y']])
        
        # Make future predictions
        future_dates = model.make_future_dataframe(periods=30)
        forecast = model.predict(future_dates)
        
        # Plot predictions
        fig = go.Figure()
        fig.add_trace(go.Scatter(
            x=daily_counts['ds'],
            y=daily_counts['y'],
            name='Actual',
            line=dict(color='blue')
        ))
        fig.add_trace(go.Scatter(
            x=forecast['ds'],
            y=forecast['yhat'],
            name='Predicted',
            line=dict(color='red', dash='dash')
        ))
        fig.add_trace(go.Scatter(
            x=forecast['ds'],
            y=forecast['yhat_upper'],
            fill=None,
            mode='lines',
            line=dict(color='rgba(255,0,0,0)'),
            showlegend=False
        ))
        fig.add_trace(go.Scatter(
            x=forecast['ds'],
            y=forecast['yhat_lower'],
            fill='tonexty',
            mode='lines',
            line=dict(color='rgba(255,0,0,0)'),
            name='Prediction Interval'
        ))
        fig.update_layout(
            title='Seismic Activity Forecast (30 Days)',
            xaxis_title='Date',
            yaxis_title='Number of Earthquakes',
            template='plotly_dark'
        )
        st.plotly_chart(fig, use_container_width=True)

def show_environmental_data(data_collector):
    st.header("Advanced Environmental Analysis 🌿")
    
    aqi_data = data_collector.fetch_air_quality_data()
    
    if aqi_data is not None:
        selected_city = st.selectbox("Select City", aqi_data['city'].unique())
        city_data = aqi_data[aqi_data['city'] == selected_city].copy()
        
        # Add download button
        st.markdown(download_csv(city_data, f"{selected_city}_air_quality_data"), unsafe_allow_html=True)
        
        # Enhanced AQI calculation with weights
        weights = {
            'PM2.5': 0.3,
            'PM10': 0.2,
            'NO2': 0.2,
            'O3': 0.2,
            'CO': 0.1
        }
        
        # Normalize and calculate weighted AQI
        for pollutant in weights.keys():
            max_val = city_data[pollutant].max()
            city_data[f'{pollutant}_normalized'] = city_data[pollutant] / max_val * 100
            city_data[f'{pollutant}_weighted'] = city_data[f'{pollutant}_normalized'] * weights[pollutant]
        
        city_data['AQI'] = sum(city_data[f'{p}_weighted'] for p in weights.keys())
        
        tabs = st.tabs(["AQI Dashboard", "Pollutant Analysis", "Trends & Forecasting", "Health Impact"])
        
        with tabs[0]:
            col1, col2, col3 = st.columns(3)
            
            current_aqi = city_data['AQI'].iloc[-1]
            with col1:
                st.metric(
                    "Current AQI",
                    f"{current_aqi:.1f}",
                    delta=f"{current_aqi - city_data['AQI'].iloc[-2]:.1f}"
                )
            
            # AQI categories
            aqi_categories = pd.cut(
                city_data['AQI'],
                bins=[0, 50, 100, 150, 200, 300, float('inf')],
                labels=['Good', 'Moderate', 'Unhealthy for Sensitive Groups', 'Unhealthy', 'Very Unhealthy', 'Hazardous']
            ).value_counts()
            
            with col2:
                fig = px.pie(
                    values=aqi_categories.values,
                    names=aqi_categories.index,
                    title='AQI Distribution'
                )
                st.plotly_chart(fig, use_container_width=True)
            
            with col3:
                # Daily pattern
                hourly_avg = city_data.groupby(city_data['datetime'].dt.hour)['AQI'].mean()
                fig = px.line(
                    x=hourly_avg.index,
                    y=hourly_avg.values,
                    title='Daily AQI Pattern',
                    labels={'x': 'Hour of Day', 'y': 'Average AQI'}
                )
                st.plotly_chart(fig, use_container_width=True)
        
        with tabs[1]:
            # Pollutant correlation analysis
            pollutants = ['PM2.5', 'PM10', 'CO', 'NO2', 'O3']
            corr_matrix = city_data[pollutants].corr()
            
            fig = px.imshow(
                corr_matrix,
                title='Pollutant Correlation Matrix',
                color_continuous_scale='RdBu'
            )
            st.plotly_chart(fig, use_container_width=True)
            
            # Individual pollutant analysis
            selected_pollutant = st.selectbox("Select Pollutant", pollutants)
            
            col1, col2 = st.columns(2)
            with col1:
                fig = px.line(
                    city_data,
                    x='datetime',
                    y=selected_pollutant,
                    title=f'{selected_pollutant} Trend'
                )
                st.plotly_chart(fig, use_container_width=True)
            
            with col2:
                fig = px.box(
                    city_data,
                    y=selected_pollutant,
                    title=f'{selected_pollutant} Distribution'
                )
                st.plotly_chart(fig, use_container_width=True)
        
        with tabs[2]:
            # Time series decomposition
            from statsmodels.tsa.seasonal import seasonal_decompose
            
            # Resample to hourly data for decomposition
            hourly_data = city_data.set_index('datetime')['AQI'].resample('H').mean()
            decomposition = seasonal_decompose(hourly_data, period=24)
            
            fig = make_subplots(rows=4, cols=1, subplot_titles=('Observed', 'Trend', 'Seasonal', 'Residual'))
            fig.add_trace(go.Scatter(x=hourly_data.index, y=hourly_data.values, name='Observed'), row=1, col=1)
            fig.add_trace(go.Scatter(x=hourly_data.index, y=decomposition.trend, name='Trend'), row=2, col=1)
            fig.add_trace(go.Scatter(x=hourly_data.index, y=decomposition.seasonal, name='Seasonal'), row=3, col=1)
            fig.add_trace(go.Scatter(x=hourly_data.index, y=decomposition.resid, name='Residual'), row=4, col=1)
            fig.update_layout(height=800, title_text="AQI Time Series Decomposition")
            st.plotly_chart(fig, use_container_width=True)
        
        with tabs[3]:
            st.subheader("Health Impact Assessment")
            
            # Define health impact thresholds
            impact_thresholds = {
                'PM2.5': [12, 35.4, 55.4, 150.4],
                'PM10': [54, 154, 254, 354],
                'NO2': [53, 100, 360, 649],
                'O3': [54, 70, 85, 105],
                'CO': [4.4, 9.4, 12.4, 15.4]
            }
            
            # Calculate current health risks
            current_risks = {}
            for pollutant, thresholds in impact_thresholds.items():
                current_val = city_data[pollutant].iloc[-1]
                if current_val <= thresholds[0]:
                    risk = 'Low'
                elif current_val <= thresholds[1]:
                    risk = 'Moderate'
                elif current_val <= thresholds[2]:
                    risk = 'High'
                else:
                    risk = 'Very High'
                current_risks[pollutant] = {'value': current_val, 'risk': risk}
            
            # Display health risks
            col1, col2 = st.columns(2)
            with col1:
                for pollutant, data in current_risks.items():
                    st.metric(
                        f"{pollutant} Health Risk",
                        data['risk'],
                        f"{data['value']:.1f}"
                    )
            
            with col2:
                # Health recommendations based on current AQI
                if current_aqi <= 50:
                    st.success("Air quality is good. Outdoor activities are safe.")
                elif current_aqi <= 100:
                    st.info("Sensitive individuals should consider reducing prolonged outdoor exertion.")
                elif current_aqi <= 150:
                    st.warning("Everyone should reduce prolonged outdoor exertion.")
                else:
                    st.error("Avoid outdoor activities. Use air purifiers indoors.")

def main():
    st.title("🌍 Pakistan Climate & Disaster Monitoring System")
    
    # Add dashboard info
    st.sidebar.image("https://upload.wikimedia.org/wikipedia/commons/3/32/Flag_of_Pakistan.svg", width=100)
    st.sidebar.title("Dashboard Controls")
    
    data_collector = DataCollector()
    
    # Enhanced navigation
    page = st.sidebar.radio(
        "Select Module",
        ["Weather Analysis", "Disaster Monitor", "Environmental Data"],
        format_func=lambda x: f"πŸ“Š {x}" if x == "Weather Analysis" else 
                            f"🚨 {x}" if x == "Disaster Monitor" else 
                            f"🌿 {x}"
    )
    
    # Add data timestamp
    st.sidebar.markdown("---")
    st.sidebar.markdown(f"Last updated: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
    
    if page == "Weather Analysis":
        show_weather_analysis(data_collector)
    elif page == "Disaster Monitor":
        show_disaster_monitor(data_collector)
    elif page == "Environmental Data":
        show_environmental_data(data_collector)

if __name__ == "__main__":
    main()