Spaces:
Running
Running
new_benchmark_2
#7
by
QuentinJG
- opened
- app.py +162 -43
- app/utils.py +25 -13
- data/dataset_handler.py +35 -0
- data/model_handler.py +60 -25
app.py
CHANGED
|
@@ -3,18 +3,36 @@ import gradio as gr
|
|
| 3 |
from app.utils import add_rank_and_format, filter_models, get_refresh_function
|
| 4 |
from data.model_handler import ModelHandler
|
| 5 |
|
| 6 |
-
METRICS = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
def main():
|
| 9 |
model_handler = ModelHandler()
|
| 10 |
initial_metric = "ndcg_at_5"
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
css = """
|
| 20 |
table > thead {
|
|
@@ -41,65 +59,167 @@ def main():
|
|
| 41 |
|
| 42 |
with gr.Blocks(css=css) as block:
|
| 43 |
with gr.Tabs():
|
| 44 |
-
with gr.TabItem("🏆 Leaderboard"):
|
| 45 |
-
gr.Markdown("# ViDoRe:
|
| 46 |
-
gr.Markdown("###
|
| 47 |
|
| 48 |
gr.Markdown(
|
| 49 |
"""
|
| 50 |
-
Visual Document Retrieval Benchmark leaderboard. To submit results, refer to the corresponding tab.
|
| 51 |
|
| 52 |
-
Refer to the [ColPali paper](https://arxiv.org/abs/2407.01449) for details on metrics
|
| 53 |
"""
|
| 54 |
)
|
| 55 |
-
|
| 56 |
-
anchor_columns = list(data.columns[:3])
|
| 57 |
-
default_columns = anchor_columns + datasets_columns
|
| 58 |
|
| 59 |
with gr.Row():
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
with gr.Row():
|
| 65 |
-
|
| 66 |
-
|
| 67 |
|
| 68 |
-
def
|
| 69 |
-
|
| 70 |
-
data =
|
|
|
|
| 71 |
data = filter_models(data, search_term)
|
|
|
|
| 72 |
if selected_columns:
|
| 73 |
-
|
| 74 |
-
data = data[selected_columns]
|
| 75 |
return data
|
| 76 |
|
| 77 |
with gr.Row():
|
| 78 |
-
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
# Automatically refresh the dataframe when the dropdown value changes
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
)
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
)
|
|
|
|
| 94 |
|
| 95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
|
| 98 |
gr.Markdown(
|
| 99 |
f"""
|
| 100 |
-
- **Total Datasets**: {
|
| 101 |
-
- **Total Scores**: {
|
| 102 |
-
- **Total Models**: {
|
| 103 |
"""
|
| 104 |
+ r"""
|
| 105 |
Please consider citing:
|
|
@@ -143,8 +263,8 @@ def main():
|
|
| 143 |
},
|
| 144 |
}
|
| 145 |
```
|
| 146 |
-
- The dataset names should be the same as the ViDoRe dataset names listed in the following
|
| 147 |
-
|
| 148 |
|
| 149 |
3. **Submit your model**:
|
| 150 |
- Create a public HuggingFace model repository with your model.
|
|
@@ -162,6 +282,5 @@ def main():
|
|
| 162 |
block.queue(max_size=10).launch(debug=True)
|
| 163 |
|
| 164 |
|
| 165 |
-
if __name__ == "__main__":
|
| 166 |
main()
|
| 167 |
-
|
|
|
|
| 3 |
from app.utils import add_rank_and_format, filter_models, get_refresh_function
|
| 4 |
from data.model_handler import ModelHandler
|
| 5 |
|
| 6 |
+
METRICS = [
|
| 7 |
+
"ndcg_at_1",
|
| 8 |
+
"ndcg_at_5",
|
| 9 |
+
"ndcg_at_10",
|
| 10 |
+
"ndcg_at_100",
|
| 11 |
+
"recall_at_1",
|
| 12 |
+
"recall_at_5",
|
| 13 |
+
"recall_at_10",
|
| 14 |
+
"recall_at_100",
|
| 15 |
+
]
|
| 16 |
+
|
| 17 |
|
| 18 |
def main():
|
| 19 |
model_handler = ModelHandler()
|
| 20 |
initial_metric = "ndcg_at_5"
|
| 21 |
|
| 22 |
+
model_handler.get_vidore_data(initial_metric)
|
| 23 |
+
data_benchmark_1 = model_handler.compute_averages(initial_metric, benchmark_version=1)
|
| 24 |
+
data_benchmark_1 = add_rank_and_format(data_benchmark_1, benchmark_version=1)
|
| 25 |
+
|
| 26 |
+
data_benchmark_2 = model_handler.compute_averages(initial_metric, benchmark_version=2)
|
| 27 |
+
data_benchmark_2 = add_rank_and_format(data_benchmark_2, benchmark_version=2)
|
| 28 |
|
| 29 |
+
NUM_DATASETS_1 = len(data_benchmark_1.columns) - 3
|
| 30 |
+
NUM_SCORES_1 = len(data_benchmark_1) * NUM_DATASETS_1
|
| 31 |
+
NUM_MODELS_1 = len(data_benchmark_1)
|
| 32 |
+
|
| 33 |
+
NUM_DATASETS_2 = len(data_benchmark_2.columns) - 3
|
| 34 |
+
NUM_SCORES_2 = len(data_benchmark_2) * NUM_DATASETS_2
|
| 35 |
+
NUM_MODELS_2 = len(data_benchmark_2)
|
| 36 |
|
| 37 |
css = """
|
| 38 |
table > thead {
|
|
|
|
| 59 |
|
| 60 |
with gr.Blocks(css=css) as block:
|
| 61 |
with gr.Tabs():
|
| 62 |
+
with gr.TabItem("🏆 Leaderboard Benchmark 2"):
|
| 63 |
+
gr.Markdown("# ViDoRe 2: A new visual Document Retrieval Benchmark 📚🔍")
|
| 64 |
+
gr.Markdown("### A harder dataset benchmark for visual document retrieval 👀")
|
| 65 |
|
| 66 |
gr.Markdown(
|
| 67 |
"""
|
| 68 |
+
Visual Document Retrieval Benchmark 2 leaderboard. To submit results, refer to the corresponding tab.
|
| 69 |
|
| 70 |
+
Refer to the [ColPali paper](https://arxiv.org/abs/2407.01449) for details on metrics and models.
|
| 71 |
"""
|
| 72 |
)
|
| 73 |
+
datasets_columns_2 = list(data_benchmark_2.columns[3:])
|
|
|
|
|
|
|
| 74 |
|
| 75 |
with gr.Row():
|
| 76 |
+
metric_dropdown_2 = gr.Dropdown(choices=METRICS, value=initial_metric, label="Select Metric")
|
| 77 |
+
research_textbox_2 = gr.Textbox(
|
| 78 |
+
placeholder="🔍 Search Models... [press enter]",
|
| 79 |
+
label="Filter Models by Name",
|
| 80 |
+
)
|
| 81 |
+
column_checkboxes_2 = gr.CheckboxGroup(
|
| 82 |
+
choices=datasets_columns_2, value=datasets_columns_2, label="Select Columns to Display"
|
| 83 |
+
)
|
| 84 |
|
| 85 |
with gr.Row():
|
| 86 |
+
datatype_2 = ["number", "markdown"] + ["number"] * (NUM_DATASETS_2 + 1)
|
| 87 |
+
dataframe_2 = gr.Dataframe(data_benchmark_2, datatype=datatype_2, type="pandas")
|
| 88 |
|
| 89 |
+
def update_data_2(metric, search_term, selected_columns):
|
| 90 |
+
model_handler.get_vidore_data(metric)
|
| 91 |
+
data = model_handler.compute_averages(metric, benchmark_version=2)
|
| 92 |
+
data = add_rank_and_format(data, benchmark_version=2)
|
| 93 |
data = filter_models(data, search_term)
|
| 94 |
+
# data = remove_duplicates(data) # Add this line
|
| 95 |
if selected_columns:
|
| 96 |
+
data = data[["Rank", "Model", "Average"] + selected_columns]
|
|
|
|
| 97 |
return data
|
| 98 |
|
| 99 |
with gr.Row():
|
| 100 |
+
refresh_button_2 = gr.Button("Refresh")
|
| 101 |
+
refresh_button_2.click(
|
| 102 |
+
get_refresh_function(model_handler, benchmark_version=2),
|
| 103 |
+
inputs=[metric_dropdown_2],
|
| 104 |
+
outputs=dataframe_2,
|
| 105 |
+
concurrency_limit=20,
|
| 106 |
+
)
|
| 107 |
|
| 108 |
+
with gr.Row():
|
| 109 |
+
gr.Markdown(
|
| 110 |
+
"""
|
| 111 |
+
**Note**: For now, all models were evaluated using the vidore-benchmark package and custom retrievers on our side.
|
| 112 |
+
Those numbers are not numbers obtained from the organisations that released those models.
|
| 113 |
+
"""
|
| 114 |
+
)
|
| 115 |
|
| 116 |
# Automatically refresh the dataframe when the dropdown value changes
|
| 117 |
+
metric_dropdown_2.change(
|
| 118 |
+
get_refresh_function(model_handler, benchmark_version=2),
|
| 119 |
+
inputs=[metric_dropdown_2],
|
| 120 |
+
outputs=dataframe_2,
|
| 121 |
+
)
|
| 122 |
+
research_textbox_2.submit(
|
| 123 |
+
lambda metric, search_term, selected_columns: update_data_2(metric, search_term, selected_columns),
|
| 124 |
+
inputs=[metric_dropdown_2, research_textbox_2, column_checkboxes_2],
|
| 125 |
+
outputs=dataframe_2,
|
| 126 |
+
)
|
| 127 |
+
column_checkboxes_2.change(
|
| 128 |
+
lambda metric, search_term, selected_columns: update_data_2(metric, search_term, selected_columns),
|
| 129 |
+
inputs=[metric_dropdown_2, research_textbox_2, column_checkboxes_2],
|
| 130 |
+
outputs=dataframe_2,
|
| 131 |
+
)
|
| 132 |
+
|
| 133 |
+
gr.Markdown(
|
| 134 |
+
f"""
|
| 135 |
+
- **Total Datasets**: {NUM_DATASETS_2}
|
| 136 |
+
- **Total Scores**: {NUM_SCORES_2}
|
| 137 |
+
- **Total Models**: {NUM_MODELS_2}
|
| 138 |
+
"""
|
| 139 |
+
+ r"""
|
| 140 |
+
Please consider citing:
|
| 141 |
+
|
| 142 |
+
```bibtex
|
| 143 |
+
@misc{faysse2024colpaliefficientdocumentretrieval,
|
| 144 |
+
title={ColPali: Efficient Document Retrieval with Vision Language Models},
|
| 145 |
+
author={Manuel Faysse and Hugues Sibille and Tony Wu and Bilel Omrani and Gautier Viaud and Céline Hudelot and Pierre Colombo},
|
| 146 |
+
year={2024},
|
| 147 |
+
eprint={2407.01449},
|
| 148 |
+
archivePrefix={arXiv},
|
| 149 |
+
primaryClass={cs.IR},
|
| 150 |
+
url={https://arxiv.org/abs/2407.01449},
|
| 151 |
+
}
|
| 152 |
+
```
|
| 153 |
+
"""
|
| 154 |
)
|
| 155 |
+
with gr.TabItem("🏆 Leaderboard Benchmark 1"):
|
| 156 |
+
gr.Markdown("# ViDoRe: The Visual Document Retrieval Benchmark 1 📚🔍")
|
| 157 |
+
gr.Markdown("### From the paper - ColPali: Efficient Document Retrieval with Vision Language Models 👀")
|
| 158 |
+
|
| 159 |
+
gr.Markdown(
|
| 160 |
+
"""
|
| 161 |
+
Visual Document Retrieval Benchmark 1 leaderboard. To submit results, refer to the corresponding tab.
|
| 162 |
+
|
| 163 |
+
Refer to the [ColPali paper](https://arxiv.org/abs/2407.01449) for details on metrics, tasks and models.
|
| 164 |
+
"""
|
| 165 |
)
|
| 166 |
+
datasets_columns_1 = list(data_benchmark_1.columns[3:])
|
| 167 |
|
| 168 |
+
with gr.Row():
|
| 169 |
+
metric_dropdown_1 = gr.Dropdown(choices=METRICS, value=initial_metric, label="Select Metric")
|
| 170 |
+
research_textbox_1 = gr.Textbox(
|
| 171 |
+
placeholder="🔍 Search Models... [press enter]",
|
| 172 |
+
label="Filter Models by Name",
|
| 173 |
+
)
|
| 174 |
+
column_checkboxes_1 = gr.CheckboxGroup(
|
| 175 |
+
choices=datasets_columns_1, value=datasets_columns_1, label="Select Columns to Display"
|
| 176 |
+
)
|
| 177 |
|
| 178 |
+
with gr.Row():
|
| 179 |
+
datatype_1 = ["number", "markdown"] + ["number"] * (NUM_DATASETS_1 + 1)
|
| 180 |
+
dataframe_1 = gr.Dataframe(data_benchmark_1, datatype=datatype_1, type="pandas")
|
| 181 |
+
|
| 182 |
+
def update_data_1(metric, search_term, selected_columns):
|
| 183 |
+
model_handler.get_vidore_data(metric)
|
| 184 |
+
data = model_handler.compute_averages(metric, benchmark_version=1)
|
| 185 |
+
data = add_rank_and_format(data, benchmark_version=1)
|
| 186 |
+
data = filter_models(data, search_term)
|
| 187 |
+
# data = remove_duplicates(data) # Add this line
|
| 188 |
+
if selected_columns:
|
| 189 |
+
data = data[["Rank", "Model", "Average"] + selected_columns]
|
| 190 |
+
return data
|
| 191 |
+
|
| 192 |
+
with gr.Row():
|
| 193 |
+
refresh_button_1 = gr.Button("Refresh")
|
| 194 |
+
refresh_button_1.click(
|
| 195 |
+
get_refresh_function(model_handler, benchmark_version=1),
|
| 196 |
+
inputs=[metric_dropdown_1],
|
| 197 |
+
outputs=dataframe_1,
|
| 198 |
+
concurrency_limit=20,
|
| 199 |
+
)
|
| 200 |
+
|
| 201 |
+
# Automatically refresh the dataframe when the dropdown value changes
|
| 202 |
+
metric_dropdown_1.change(
|
| 203 |
+
get_refresh_function(model_handler, benchmark_version=1),
|
| 204 |
+
inputs=[metric_dropdown_1],
|
| 205 |
+
outputs=dataframe_1,
|
| 206 |
+
)
|
| 207 |
+
research_textbox_1.submit(
|
| 208 |
+
lambda metric, search_term, selected_columns: update_data_1(metric, search_term, selected_columns),
|
| 209 |
+
inputs=[metric_dropdown_1, research_textbox_1, column_checkboxes_1],
|
| 210 |
+
outputs=dataframe_1,
|
| 211 |
+
)
|
| 212 |
+
column_checkboxes_1.change(
|
| 213 |
+
lambda metric, search_term, selected_columns: update_data_1(metric, search_term, selected_columns),
|
| 214 |
+
inputs=[metric_dropdown_1, research_textbox_1, column_checkboxes_1],
|
| 215 |
+
outputs=dataframe_1,
|
| 216 |
+
)
|
| 217 |
|
| 218 |
gr.Markdown(
|
| 219 |
f"""
|
| 220 |
+
- **Total Datasets**: {NUM_DATASETS_1}
|
| 221 |
+
- **Total Scores**: {NUM_SCORES_1}
|
| 222 |
+
- **Total Models**: {NUM_MODELS_1}
|
| 223 |
"""
|
| 224 |
+ r"""
|
| 225 |
Please consider citing:
|
|
|
|
| 263 |
},
|
| 264 |
}
|
| 265 |
```
|
| 266 |
+
- The dataset names should be the same as the ViDoRe and ViDoRe 2 dataset names listed in the following
|
| 267 |
+
collections: [ViDoRe Benchmark](https://huggingface.co/collections/vidore/vidore-benchmark-667173f98e70a1c0fa4db00d) and [ViDoRe Benchmark 2](vidore/vidore-benchmark-v2-dev-67ae03e3924e85b36e7f53b0).
|
| 268 |
|
| 269 |
3. **Submit your model**:
|
| 270 |
- Create a public HuggingFace model repository with your model.
|
|
|
|
| 282 |
block.queue(max_size=10).launch(debug=True)
|
| 283 |
|
| 284 |
|
| 285 |
+
if __name__ == "__main__":
|
| 286 |
main()
|
|
|
app/utils.py
CHANGED
|
@@ -1,31 +1,43 @@
|
|
| 1 |
from data.model_handler import ModelHandler
|
| 2 |
|
|
|
|
| 3 |
def make_clickable_model(model_name, link=None):
|
| 4 |
if link is None:
|
| 5 |
desanitized_model_name = model_name.replace("_", "/")
|
|
|
|
| 6 |
|
| 7 |
-
if
|
| 8 |
-
desanitized_model_name = desanitized_model_name.replace(
|
| 9 |
-
if
|
| 10 |
-
desanitized_model_name = desanitized_model_name.replace(
|
| 11 |
|
| 12 |
link = "https://huggingface.co/" + desanitized_model_name
|
| 13 |
|
| 14 |
-
return f'<a target="_blank" style="text-decoration: underline" href="{link}">{
|
| 15 |
|
| 16 |
|
| 17 |
-
def add_rank_and_format(df):
|
| 18 |
df = df.reset_index()
|
| 19 |
df = df.rename(columns={"index": "Model"})
|
| 20 |
-
df = ModelHandler.add_rank(df)
|
| 21 |
df["Model"] = df["Model"].apply(make_clickable_model)
|
|
|
|
| 22 |
return df
|
| 23 |
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
def _refresh(metric):
|
| 26 |
-
model_handler
|
| 27 |
-
data_task_category = model_handler.
|
| 28 |
-
df = add_rank_and_format(data_task_category)
|
| 29 |
return df
|
| 30 |
|
| 31 |
return _refresh
|
|
@@ -33,5 +45,5 @@ def get_refresh_function():
|
|
| 33 |
|
| 34 |
def filter_models(data, search_term):
|
| 35 |
if search_term:
|
| 36 |
-
data = data[data[
|
| 37 |
-
return data
|
|
|
|
| 1 |
from data.model_handler import ModelHandler
|
| 2 |
|
| 3 |
+
|
| 4 |
def make_clickable_model(model_name, link=None):
|
| 5 |
if link is None:
|
| 6 |
desanitized_model_name = model_name.replace("_", "/")
|
| 7 |
+
desanitized_model_name = desanitized_model_name.replace("-thisisapoint-", ".")
|
| 8 |
|
| 9 |
+
if "/captioning" in desanitized_model_name:
|
| 10 |
+
desanitized_model_name = desanitized_model_name.replace("/captioning", "")
|
| 11 |
+
if "/ocr" in desanitized_model_name:
|
| 12 |
+
desanitized_model_name = desanitized_model_name.replace("/ocr", "")
|
| 13 |
|
| 14 |
link = "https://huggingface.co/" + desanitized_model_name
|
| 15 |
|
| 16 |
+
return f'<a target="_blank" style="text-decoration: underline" href="{link}">{desanitized_model_name}</a>'
|
| 17 |
|
| 18 |
|
| 19 |
+
def add_rank_and_format(df, benchmark_version=1):
|
| 20 |
df = df.reset_index()
|
| 21 |
df = df.rename(columns={"index": "Model"})
|
| 22 |
+
df = ModelHandler.add_rank(df, benchmark_version)
|
| 23 |
df["Model"] = df["Model"].apply(make_clickable_model)
|
| 24 |
+
# df = remove_duplicates(df)
|
| 25 |
return df
|
| 26 |
|
| 27 |
+
|
| 28 |
+
def remove_duplicates(df):
|
| 29 |
+
"""Remove duplicate models based on their name (after the last '/' if present)."""
|
| 30 |
+
df["model_name"] = df["Model"].str.replace("_", "/")
|
| 31 |
+
df = df.sort_values("Rank").drop_duplicates(subset=["model_name"], keep="first")
|
| 32 |
+
df = df.drop("model_name", axis=1)
|
| 33 |
+
return df
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def get_refresh_function(model_handler, benchmark_version):
|
| 37 |
def _refresh(metric):
|
| 38 |
+
model_handler.get_vidore_data(metric)
|
| 39 |
+
data_task_category = model_handler.compute_averages(metric, benchmark_version)
|
| 40 |
+
df = add_rank_and_format(data_task_category, benchmark_version)
|
| 41 |
return df
|
| 42 |
|
| 43 |
return _refresh
|
|
|
|
| 45 |
|
| 46 |
def filter_models(data, search_term):
|
| 47 |
if search_term:
|
| 48 |
+
data = data[data["Model"].str.contains(search_term, case=False, na=False)]
|
| 49 |
+
return data
|
data/dataset_handler.py
CHANGED
|
@@ -11,6 +11,14 @@ VIDORE_DATASETS_KEYWORDS = [
|
|
| 11 |
"healthcare_industry",
|
| 12 |
]
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
def get_datasets_nickname(dataset_name) -> str:
|
| 16 |
if "arxivqa" in dataset_name:
|
|
@@ -41,5 +49,32 @@ def get_datasets_nickname(dataset_name) -> str:
|
|
| 41 |
elif "healthcare_industry" in dataset_name:
|
| 42 |
return "Healthcare Industry"
|
| 43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
else:
|
| 45 |
raise ValueError(f"Dataset {dataset_name} not found in ViDoRe")
|
|
|
|
| 11 |
"healthcare_industry",
|
| 12 |
]
|
| 13 |
|
| 14 |
+
VIDORE_2_DATASETS_KEYWORDS = [
|
| 15 |
+
"restaurant_esg",
|
| 16 |
+
"rse_restaurant",
|
| 17 |
+
"axa",
|
| 18 |
+
"mit_biomedical",
|
| 19 |
+
"economics_macro",
|
| 20 |
+
]
|
| 21 |
+
|
| 22 |
|
| 23 |
def get_datasets_nickname(dataset_name) -> str:
|
| 24 |
if "arxivqa" in dataset_name:
|
|
|
|
| 49 |
elif "healthcare_industry" in dataset_name:
|
| 50 |
return "Healthcare Industry"
|
| 51 |
|
| 52 |
+
elif "restaurant_esg" in dataset_name:
|
| 53 |
+
return "ESG Restaurant Human"
|
| 54 |
+
|
| 55 |
+
elif "rse_restaurant" in dataset_name and "multilingual" in dataset_name:
|
| 56 |
+
return "ESG Restaurant Synthetic Multilingual"
|
| 57 |
+
|
| 58 |
+
elif "rse_restaurant" in dataset_name:
|
| 59 |
+
return "ESG Restaurant Synthetic"
|
| 60 |
+
|
| 61 |
+
elif "axa" in dataset_name and "multilingual" in dataset_name:
|
| 62 |
+
return "AXA Multilingual"
|
| 63 |
+
|
| 64 |
+
elif "axa" in dataset_name:
|
| 65 |
+
return "AXA"
|
| 66 |
+
|
| 67 |
+
elif "mit_biomedical" in dataset_name and "multilingual" in dataset_name:
|
| 68 |
+
return "MIT Biomedical Multilingual"
|
| 69 |
+
|
| 70 |
+
elif "mit_biomedical" in dataset_name:
|
| 71 |
+
return "MIT Biomedical"
|
| 72 |
+
|
| 73 |
+
elif "economics_macro" in dataset_name and "multilingual" in dataset_name:
|
| 74 |
+
return "Economics Macro Multilingual"
|
| 75 |
+
|
| 76 |
+
elif "economics_macro" in dataset_name:
|
| 77 |
+
return "Economics Macro"
|
| 78 |
+
|
| 79 |
else:
|
| 80 |
raise ValueError(f"Dataset {dataset_name} not found in ViDoRe")
|
data/model_handler.py
CHANGED
|
@@ -5,7 +5,7 @@ from typing import Any, Dict
|
|
| 5 |
import pandas as pd
|
| 6 |
from huggingface_hub import HfApi, hf_hub_download, metadata_load
|
| 7 |
|
| 8 |
-
from .dataset_handler import VIDORE_DATASETS_KEYWORDS, get_datasets_nickname
|
| 9 |
|
| 10 |
BLOCKLIST = ["impactframes"]
|
| 11 |
|
|
@@ -29,15 +29,30 @@ class ModelHandler:
|
|
| 29 |
def _are_results_in_new_vidore_format(self, results: Dict[str, Any]) -> bool:
|
| 30 |
return "metadata" in results and "metrics" in results
|
| 31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
def get_vidore_data(self, metric="ndcg_at_5"):
|
| 33 |
models = self.api.list_models(filter="vidore")
|
| 34 |
repositories = [model.modelId for model in models] # type: ignore
|
| 35 |
|
|
|
|
|
|
|
|
|
|
| 36 |
for repo_id in repositories:
|
| 37 |
org_name = repo_id.split("/")[0]
|
| 38 |
if org_name in BLOCKLIST:
|
| 39 |
continue
|
| 40 |
-
|
| 41 |
files = [f for f in self.api.list_repo_files(repo_id) if f.endswith("_metrics.json") or f == "results.json"]
|
| 42 |
|
| 43 |
if len(files) == 0:
|
|
@@ -45,39 +60,58 @@ class ModelHandler:
|
|
| 45 |
else:
|
| 46 |
for file in files:
|
| 47 |
if file.endswith("results.json"):
|
| 48 |
-
model_name = repo_id.replace("/", "_")
|
| 49 |
else:
|
| 50 |
model_name = file.split("_metrics.json")[0]
|
|
|
|
| 51 |
|
| 52 |
-
if
|
| 53 |
-
readme_path = hf_hub_download(repo_id, filename="README.md")
|
| 54 |
-
meta = metadata_load(readme_path)
|
| 55 |
-
try:
|
| 56 |
-
result_path = hf_hub_download(repo_id, filename=file)
|
| 57 |
|
| 58 |
-
|
| 59 |
-
|
|
|
|
|
|
|
| 60 |
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
results = results["metrics"]
|
| 64 |
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
continue
|
| 69 |
|
| 70 |
-
|
|
|
|
|
|
|
|
|
|
| 71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
model_res = {}
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
|
|
|
| 76 |
dataset_res = {}
|
|
|
|
| 77 |
for dataset in res.keys():
|
| 78 |
-
|
| 79 |
-
if not any(keyword in dataset for keyword in VIDORE_DATASETS_KEYWORDS):
|
| 80 |
-
print(f"{dataset} not found in ViDoRe datasets. Skipping ...")
|
| 81 |
continue
|
| 82 |
|
| 83 |
dataset_nickname = get_datasets_nickname(dataset)
|
|
@@ -90,7 +124,7 @@ class ModelHandler:
|
|
| 90 |
return pd.DataFrame()
|
| 91 |
|
| 92 |
@staticmethod
|
| 93 |
-
def add_rank(df):
|
| 94 |
df.fillna(0.0, inplace=True)
|
| 95 |
cols_to_rank = [
|
| 96 |
col
|
|
@@ -104,6 +138,7 @@ class ModelHandler:
|
|
| 104 |
"Max Tokens",
|
| 105 |
]
|
| 106 |
]
|
|
|
|
| 107 |
if len(cols_to_rank) == 1:
|
| 108 |
df.sort_values(cols_to_rank[0], ascending=False, inplace=True)
|
| 109 |
else:
|
|
|
|
| 5 |
import pandas as pd
|
| 6 |
from huggingface_hub import HfApi, hf_hub_download, metadata_load
|
| 7 |
|
| 8 |
+
from .dataset_handler import VIDORE_2_DATASETS_KEYWORDS, VIDORE_DATASETS_KEYWORDS, get_datasets_nickname
|
| 9 |
|
| 10 |
BLOCKLIST = ["impactframes"]
|
| 11 |
|
|
|
|
| 29 |
def _are_results_in_new_vidore_format(self, results: Dict[str, Any]) -> bool:
|
| 30 |
return "metadata" in results and "metrics" in results
|
| 31 |
|
| 32 |
+
def _is_baseline_repo(self, repo_id: str) -> bool:
|
| 33 |
+
return repo_id == "vidore/baseline-results"
|
| 34 |
+
|
| 35 |
+
def sanitize_model_name(self, model_name):
|
| 36 |
+
return model_name.replace("/", "_").replace(".", "-thisisapoint-")
|
| 37 |
+
|
| 38 |
+
def fuze_model_infos(self, model_name, results):
|
| 39 |
+
for dataset, metrics in results.items():
|
| 40 |
+
if dataset not in self.model_infos[model_name]["results"].keys():
|
| 41 |
+
self.model_infos[model_name]["results"][dataset] = metrics
|
| 42 |
+
else:
|
| 43 |
+
continue
|
| 44 |
+
|
| 45 |
def get_vidore_data(self, metric="ndcg_at_5"):
|
| 46 |
models = self.api.list_models(filter="vidore")
|
| 47 |
repositories = [model.modelId for model in models] # type: ignore
|
| 48 |
|
| 49 |
+
# Sort repositories to process non-baseline repos first (to prioritize their results)
|
| 50 |
+
repositories.sort(key=lambda x: self._is_baseline_repo(x))
|
| 51 |
+
|
| 52 |
for repo_id in repositories:
|
| 53 |
org_name = repo_id.split("/")[0]
|
| 54 |
if org_name in BLOCKLIST:
|
| 55 |
continue
|
|
|
|
| 56 |
files = [f for f in self.api.list_repo_files(repo_id) if f.endswith("_metrics.json") or f == "results.json"]
|
| 57 |
|
| 58 |
if len(files) == 0:
|
|
|
|
| 60 |
else:
|
| 61 |
for file in files:
|
| 62 |
if file.endswith("results.json"):
|
| 63 |
+
model_name = repo_id.replace("/", "_").replace(".", "-thisisapoint-")
|
| 64 |
else:
|
| 65 |
model_name = file.split("_metrics.json")[0]
|
| 66 |
+
model_name = model_name.replace("/", "_").replace(".", "-thisisapoint-")
|
| 67 |
|
| 68 |
+
# Skip if the model is from baseline and we already have results
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
|
| 70 |
+
readme_path = hf_hub_download(repo_id, filename="README.md")
|
| 71 |
+
meta = metadata_load(readme_path)
|
| 72 |
+
try:
|
| 73 |
+
result_path = hf_hub_download(repo_id, filename=file)
|
| 74 |
|
| 75 |
+
with open(result_path) as f:
|
| 76 |
+
results = json.load(f)
|
|
|
|
| 77 |
|
| 78 |
+
if self._are_results_in_new_vidore_format(results):
|
| 79 |
+
metadata = results["metadata"]
|
| 80 |
+
results = results["metrics"]
|
|
|
|
| 81 |
|
| 82 |
+
# Handles the case where the model is both in baseline and outside of it
|
| 83 |
+
# (prioritizes the non-baseline results)
|
| 84 |
+
if self._is_baseline_repo(repo_id) and self.sanitize_model_name(model_name) in self.model_infos:
|
| 85 |
+
self.fuze_model_infos(model_name, results)
|
| 86 |
|
| 87 |
+
self.model_infos[model_name] = {"meta": meta, "results": results}
|
| 88 |
+
except Exception as e:
|
| 89 |
+
print(f"Error loading {model_name} - {e}")
|
| 90 |
+
continue
|
| 91 |
+
|
| 92 |
+
# In order to keep only models relevant to a benchmark
|
| 93 |
+
def filter_models_by_benchmark(self, benchmark_version=1):
|
| 94 |
+
filtered_model_infos = {}
|
| 95 |
+
keywords = VIDORE_DATASETS_KEYWORDS if benchmark_version == 1 else VIDORE_2_DATASETS_KEYWORDS
|
| 96 |
+
|
| 97 |
+
for model, info in self.model_infos.items():
|
| 98 |
+
results = info["results"]
|
| 99 |
+
if any(any(keyword in dataset for keyword in keywords) for dataset in results.keys()):
|
| 100 |
+
filtered_model_infos[model] = info
|
| 101 |
+
|
| 102 |
+
return filtered_model_infos
|
| 103 |
+
|
| 104 |
+
# Compute the average of a metric for each model,
|
| 105 |
+
def compute_averages(self, metric="ndcg_at_5", benchmark_version=1):
|
| 106 |
model_res = {}
|
| 107 |
+
filtered_model_infos = self.filter_models_by_benchmark(benchmark_version)
|
| 108 |
+
if len(filtered_model_infos) > 0:
|
| 109 |
+
for model in filtered_model_infos.keys():
|
| 110 |
+
res = filtered_model_infos[model]["results"]
|
| 111 |
dataset_res = {}
|
| 112 |
+
keywords = VIDORE_DATASETS_KEYWORDS if benchmark_version == 1 else VIDORE_2_DATASETS_KEYWORDS
|
| 113 |
for dataset in res.keys():
|
| 114 |
+
if not any(keyword in dataset for keyword in keywords):
|
|
|
|
|
|
|
| 115 |
continue
|
| 116 |
|
| 117 |
dataset_nickname = get_datasets_nickname(dataset)
|
|
|
|
| 124 |
return pd.DataFrame()
|
| 125 |
|
| 126 |
@staticmethod
|
| 127 |
+
def add_rank(df, benchmark_version=1):
|
| 128 |
df.fillna(0.0, inplace=True)
|
| 129 |
cols_to_rank = [
|
| 130 |
col
|
|
|
|
| 138 |
"Max Tokens",
|
| 139 |
]
|
| 140 |
]
|
| 141 |
+
|
| 142 |
if len(cols_to_rank) == 1:
|
| 143 |
df.sort_values(cols_to_rank[0], ascending=False, inplace=True)
|
| 144 |
else:
|