Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 24,462 Bytes
7b33394 a1180f7 fd1b271 c6893be fd1b271 d434239 5f4344d 0aef7d0 fd1b271 12446b3 fd1b271 a1180f7 fd1b271 a1180f7 7b33394 a1180f7 7b33394 a1180f7 3e95dda a1180f7 7b33394 faece1b 7b33394 faece1b 7b33394 faece1b 7b33394 faece1b 7b33394 faece1b 7b33394 faece1b 0f0122d b24fcf4 7a031ac b24fcf4 7a031ac faece1b b24fcf4 faece1b a1180f7 3e95dda 7b420fa 3e95dda a1180f7 19d30fe 0aef7d0 a1180f7 bbb5184 c6893be a1180f7 c6893be a1180f7 c6893be a1180f7 c6893be a1180f7 12446b3 c6893be a1180f7 500d0e4 c6893be a1180f7 c6893be a1180f7 c6893be 8d1a737 c6893be 8d1a737 c6893be a1180f7 c6893be 5c1cea6 c6893be 5c1cea6 8d1a737 d434239 8d1a737 c6893be 5c1cea6 c6893be 8d1a737 c6893be a1180f7 7290ba6 d2bda67 4646386 a1180f7 0aef7d0 a1180f7 0aef7d0 a1180f7 0aef7d0 a1180f7 0aef7d0 a1180f7 0aef7d0 a1180f7 0aef7d0 a1180f7 7a031ac 7b33394 3772fe4 7b33394 7b420fa 7b33394 7b420fa 7b33394 7b420fa 7b33394 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 |
import pandas as pd
import numpy as np
import random
from typing import Literal
import chromadb
import re, unicodedata
from config import SanatanConfig
from embeddings import get_embedding
import logging
from pydantic import BaseModel
from metadata import MetadataFilter, MetadataWhereClause
from modules.db.relevance import validate_relevance_queryresult
from tqdm import tqdm
logging.basicConfig()
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
class SanatanDatabase:
def __init__(self) -> None:
self.chroma_client = chromadb.PersistentClient(path=SanatanConfig.dbStorePath)
def does_data_exist(self, collection_name: str) -> bool:
collection = self.chroma_client.get_or_create_collection(name=collection_name)
num_rows = collection.count()
logger.info("num_rows in %s = %d", collection_name, num_rows)
return num_rows > 0
def load(self, collection_name: str, ids, documents, embeddings, metadatas):
collection = self.chroma_client.get_or_create_collection(name=collection_name)
collection.add(
ids=ids,
documents=documents,
embeddings=embeddings,
metadatas=metadatas,
)
def fetch_random_data(
self,
collection_name: str,
metadata_where_clause: MetadataWhereClause = None,
n_results=1,
):
# fetch all documents once
logger.info(
"getting %d random verses from [%s] | metadata_where_clause = %s",
n_results,
collection_name,
metadata_where_clause,
)
collection = self.chroma_client.get_or_create_collection(name=collection_name)
data = collection.get(
include=["metadatas", "documents"],
where=(
metadata_where_clause.to_chroma_where()
if metadata_where_clause is not None
else None
)
)
docs = data["documents"] # list of all verse texts
ids = data["ids"]
metas = data["metadatas"]
if not docs:
logger.warning("No data found! - data=%s", data)
return chromadb.QueryResult(ids=[], documents=[], metadatas=[])
# pick k random indices
indices = random.sample(range(len(docs)), k=min(n_results, len(docs)))
return chromadb.QueryResult(
ids=[ids[i] for i in indices],
documents=[docs[i] for i in indices],
metadatas=[metas[i] for i in indices],
)
def fetch_first_match(
self,
collection_name: str,
metadata_where_clause: MetadataWhereClause = None
):
"""This version is created to support the browse module"""
logger.info(
"getting first matching verses from [%s] | metadata_where_clause = %s",
collection_name,
metadata_where_clause,
)
collection = self.chroma_client.get_or_create_collection(name=collection_name)
data = collection.get(
limit=1, #hardcoded to 1 by design
include=["metadatas", "documents"],
where=(
metadata_where_clause.to_chroma_where()
if metadata_where_clause is not None
else None
)
)
docs = data["documents"] # list of all verse texts
ids = data["ids"]
metas = data["metadatas"]
if not docs:
logger.warning("No data found! - data=%s", data)
return chromadb.GetResult(ids=[], documents=[], metadatas=[])
# pick k random indices
return data
def search(
self,
collection_name: str,
query: str = None,
metadata_where_clause: MetadataWhereClause = None,
n_results=2,
search_type: Literal["semantic", "literal", "random"] = "semantic",
):
logger.info(
"Search for [%s] in [%s]| metadata_where_clause=%s | search_type=%s | n_results=%d",
query,
collection_name,
metadata_where_clause,
search_type,
n_results,
)
if search_type == "semantic":
return self.search_semantic(
collection_name=collection_name,
query=query,
metadata_where_clause=metadata_where_clause,
n_results=n_results,
)
elif search_type == "literal":
return self.search_for_literal(
collection_name=collection_name,
literal_to_search_for=query,
metadata_where_clause=metadata_where_clause,
n_results=n_results,
)
else:
# random
return self.fetch_random_data(
collection_name=collection_name,
metadata_where_clause=metadata_where_clause,
n_results=n_results,
)
def fetch_document_by_index(self, collection_name: str, index: int):
"""
Fetch one document at a time from a ChromaDB collection using pagination (index = 0-based).
Args:
collection_name: Name of the ChromaDB collection.
index: Zero-based index of the document to fetch.
Returns:
dict: {
"document": <document_text>,
<metadata_key_1>: <value>,
<metadata_key_2>: <value>,
...
}
Or a dict with "error" key if something went wrong.
"""
logger.info("fetching index %d from [%s]", index, collection_name)
collection = self.chroma_client.get_or_create_collection(name=collection_name)
try:
response = collection.get(
limit=1,
# offset=index, # pagination via offset
include=["metadatas", "documents"],
where={"_global_index": index},
)
except Exception as e:
logger.error("Error fetching document: %s", e, exc_info=True)
return {"error": f"There was an error fetching the document: {str(e)}"}
documents = response.get("documents", [])
metadatas = response.get("metadatas", [])
ids = response.get("ids", [])
if documents:
# merge document text with metadata
result = {"document": documents[0]}
if metadatas:
result.update(metadatas[0])
if ids:
result["id"] = ids[0]
print("raw data = ", result)
return result
else:
print("No data available")
# show a sample data record
response1 = collection.get(
limit=2,
# offset=index, # pagination via offset
include=["metadatas", "documents"],
)
print("sample data : ", response1)
return {"error": "No data available."}
def search_semantic(
self,
collection_name: str,
query: str | None = None,
metadata_where_clause: MetadataWhereClause | None = None,
n_results=2,
):
logger.info(
"Vector Semantic Search for [%s] in [%s] | metadata_where_clause = %s",
query,
collection_name,
metadata_where_clause,
)
collection = self.chroma_client.get_or_create_collection(name=collection_name)
try:
q = query.strip() if query is not None else ""
if not q:
# fallback: fetch random verse
return self.fetch_random_data(
collection_name=collection_name,
metadata_where_clause=metadata_where_clause,
n_results=n_results,
)
else:
response = collection.query(
query_embeddings=get_embedding(
[query],
SanatanConfig().get_embedding_for_collection(collection_name),
),
# query_texts=[query],
n_results=n_results,
where=(
metadata_where_clause.to_chroma_where()
if metadata_where_clause is not None
else None
),
include=["metadatas", "documents", "distances"],
)
except Exception as e:
logger.error("Error in search: %s", e, exc_info=True)
return chromadb.QueryResult(
documents=[],
ids=[],
metadatas=[],
distances=[],
)
validated_response = validate_relevance_queryresult(query, response)
logger.info(
"status = %s | reason= %s",
validated_response.status,
validated_response.reason,
)
return validated_response.result
def search_for_literal(
self,
collection_name: str,
literal_to_search_for: str | None = None,
metadata_where_clause: MetadataWhereClause | None = None,
n_results=2,
):
logger.info(
"Searching literally for [%s] in [%s] | metadata_where_clause = %s",
literal_to_search_for,
collection_name,
metadata_where_clause,
)
if literal_to_search_for is None or literal_to_search_for.strip() == "":
logger.warning("Nothing to search literally.")
raise Exception("query cannot be None or empty for a literal search!")
# return self.fetch_random_data(
# collection_name=collection_name,
# )
collection = self.chroma_client.get_or_create_collection(name=collection_name)
def normalize(text):
return unicodedata.normalize("NFKC", text).lower()
# 1. Try native contains
response = collection.get(
where=(
metadata_where_clause.to_chroma_where()
if metadata_where_clause is not None
else None
),
where_document={"$contains": literal_to_search_for},
limit=n_results,
)
if response["documents"] and any(response["documents"]):
return chromadb.QueryResult(
ids=response["ids"],
documents=response["documents"],
metadatas=response["metadatas"],
)
# 2. Regex fallback (normalized)
logger.info("⚠ No luck. Falling back to regex for %s", literal_to_search_for)
regex = re.compile(re.escape(normalize(literal_to_search_for)))
logger.info("regex = %s", regex)
all_docs = collection.get(
where=(
metadata_where_clause.to_chroma_where()
if metadata_where_clause is not None
else None
),
)
matched_docs = []
for doc_list, metadata_list, doc_id_list in zip(
all_docs["documents"], all_docs["metadatas"], all_docs["ids"]
):
# Ensure all are lists
if isinstance(doc_list, str):
doc_list = [doc_list]
if isinstance(metadata_list, dict):
metadata_list = [metadata_list]
if isinstance(doc_id_list, str):
doc_id_list = [doc_id_list]
for i in range(len(doc_list)):
d = doc_list[i]
current_metadata = metadata_list[i]
current_id = doc_id_list[i]
doc_match = regex.search(normalize(d))
metadata_match = False
for key, value in current_metadata.items():
if isinstance(value, str) and regex.search(normalize(value)):
metadata_match = True
break
elif isinstance(value, list):
if any(
isinstance(v, str) and regex.search(normalize(v))
for v in value
):
metadata_match = True
break
if doc_match or metadata_match:
matched_docs.append(
{
"id": current_id,
"document": d,
"metadata": current_metadata,
}
)
if len(matched_docs) >= n_results:
break
if len(matched_docs) >= n_results:
break
return chromadb.QueryResult(
{
"documents": [[d["document"] for d in matched_docs]],
"ids": [[d["id"] for d in matched_docs]],
"metadatas": [[d["metadata"] for d in matched_docs]],
}
)
def count(self, collection_name: str):
collection = self.chroma_client.get_or_create_collection(name=collection_name)
total_count = collection.count()
logger.info("Total records in [%s] = %d", collection_name, total_count)
return total_count
def test_sanity(self):
for scripture in SanatanConfig().scriptures:
count = self.count(collection_name=scripture["collection_name"])
if count == 0:
raise Exception(f"No data in collection {scripture["collection_name"]}")
def reembed_collection_openai(self, collection_name: str, batch_size: int = 50):
"""
Deletes and recreates a Chroma collection with OpenAI text-embedding-3-large embeddings.
All existing documents are re-embedded and inserted into the new collection.
Args:
collection_name: The name of the collection to delete/recreate.
batch_size: Number of documents to process per batch.
"""
# Step 1: Fetch old collection data (if exists)
try:
old_collection = self.chroma_client.get_collection(name=collection_name)
old_data = old_collection.get(include=["documents", "metadatas"])
documents = old_data["documents"]
metadatas = old_data["metadatas"]
ids = old_data["ids"]
print(f"Fetched {len(documents)} documents from old collection.")
# Step 2: Delete old collection
# self.chroma_client.delete_collection(collection_name)
# print(f"Deleted old collection '{collection_name}'.")
except chromadb.errors.NotFoundError:
print(f"No existing collection named '{collection_name}', starting fresh.")
documents, metadatas, ids = [], [], []
# Step 3: Create new collection with correct embedding dimension
new_collection = self.chroma_client.create_collection(
name=f"{collection_name}_openai",
embedding_function=None, # embeddings will be provided manually
)
print(
f"Created new collection '{collection_name}_openai' with embedding_dim=3072."
)
# Step 4: Re-embed and insert documents in batches
for i in tqdm(
range(0, len(documents), batch_size), desc="Re-embedding batches"
):
batch_docs = documents[i : i + batch_size]
batch_metadatas = metadatas[i : i + batch_size]
batch_ids = ids[i : i + batch_size]
embeddings = get_embedding(batch_docs, backend="openai")
new_collection.add(
ids=batch_ids,
documents=batch_docs,
metadatas=batch_metadatas,
embeddings=embeddings,
)
print("All documents re-embedded and added to new collection successfully!")
def add_unit_index_to_collection(self, collection_name: str, unit_field: str):
if collection_name != "yt_metadata":
# safeguard just incase
return
collection = self.chroma_client.get_collection(name=collection_name)
# fetch everything in batches (in case your collection is large)
batch_size = 100
offset = 0
unit_counter = 1
while True:
result = collection.get(
limit=batch_size,
offset=offset,
include=["documents", "metadatas", "embeddings"],
)
ids = result["ids"]
if not ids:
break # no more docs
docs = result["documents"]
metas = result["metadatas"]
embeddings = result["embeddings"]
# add unit_index to metadata
updated_metas = []
for meta in metas:
# ensure meta is not None
m = meta.copy() if meta else {}
m[unit_field] = unit_counter
updated_metas.append(m)
unit_counter += 1
# upsert with same IDs (will overwrite metadata but keep same id+doc)
collection.upsert(
ids=ids,
documents=docs,
metadatas=updated_metas,
embeddings=embeddings,
)
offset += batch_size
print(
f"✅ Finished adding {unit_field} to {unit_counter-1} documents in {collection_name}."
)
def get_list_of_values(
self, collection_name: str, metadata_field_name: str
) -> list:
"""
Returns the unique values for a given metadata field in a collection.
"""
# Get the collection
collection = self.chroma_client.get_or_create_collection(name=collection_name)
# Fetch all metadata from the collection
query_result = collection.get(include=["metadatas"])
values = set() # use a set to automatically deduplicate
metadatas = query_result.get("metadatas", [])
if metadatas:
# Handle both flat list and nested list formats
if isinstance(metadatas[0], dict):
# flat list of dicts
for md in metadatas:
if metadata_field_name in md:
values.add(md[metadata_field_name])
elif isinstance(metadatas[0], list):
# nested list
for md_list in metadatas:
for md in md_list:
if metadata_field_name in md:
values.add(md[metadata_field_name])
return sorted(list(values))
def build_global_index_for_all_scriptures(self, force: bool = False):
import pandas as pd
import numpy as np
logger.info("build_global_index_for_all_scriptures: started")
config = SanatanConfig()
for scripture in config.scriptures:
scripture_name = scripture["name"]
chapter_order = scripture.get("chapter_order", None)
# if scripture_name != "vishnu_sahasranamam":
# continue
logger.info(
"build_global_index_for_all_scriptures:%s: Processing", scripture_name
)
collection_name = scripture["collection_name"]
collection = self.chroma_client.get_or_create_collection(
name=collection_name
)
metadata_fields = scripture.get("metadata_fields", [])
# Get metadata field names marked as unique
unique_fields = [f["name"] for f in metadata_fields if f.get("is_unique")]
if not unique_fields:
if metadata_fields:
unique_fields = [metadata_fields[0]["name"]]
else:
logger.warning(
f"No metadata fields defined for {collection_name}, skipping"
)
continue
logger.info(
"build_global_index_for_all_scriptures:%s:unique fields: %s",
scripture_name,
unique_fields,
)
# Build chapter_order mapping if defined
chapter_order_mapping = {}
for field in metadata_fields:
if callable(chapter_order):
chapter_order_mapping = chapter_order()
logger.info(
"build_global_index_for_all_scriptures:%s:chapter_order_mapping: %s",
scripture_name,
chapter_order_mapping,
)
# Fetch all records (keep embeddings for upsert)
try:
results = collection.get(
include=["metadatas", "documents", "embeddings"]
)
except Exception as e:
logger.error(
"build_global_index_for_all_scriptures:%s Error getting data from chromadb",
scripture_name,
exc_info=True,
)
continue
ids = results["ids"]
metadatas = results["metadatas"]
documents = results["documents"]
embeddings = results.get("embeddings", [None] * len(ids))
if not force and metadatas and "_global_index" in metadatas[0]:
logger.warning(
"build_global_index_for_all_scriptures:%s: global index already available. skipping collection",
scripture_name,
)
continue
# Create a DataFrame for metadata sorting
df = pd.DataFrame(metadatas)
df["_id"] = ids
df["_doc"] = documents
# Add sortable columns for each unique field
for field_name in unique_fields:
if field_name.lower() == "chapter" and chapter_order_mapping:
# Map chapter names to their defined order
df["_sort_" + field_name] = (
df[field_name].map(chapter_order_mapping).fillna(np.inf)
)
else:
# Try numeric, fallback to string lowercase
def parse_val(v):
if v is None:
return float("inf")
if isinstance(v, int):
return v
if isinstance(v, str):
v = v.strip()
return int(v) if v.isdigit() else v.lower()
return str(v)
df["_sort_" + field_name] = df[field_name].apply(parse_val)
sort_cols = ["_sort_" + f for f in unique_fields]
df = df.sort_values(by=sort_cols, kind="stable").reset_index(drop=True)
# Assign global index
df["_global_index"] = range(1, len(df) + 1)
logger.info(
"build_global_index_for_all_scriptures:%s: updating database",
scripture_name,
)
# Batch upsert
BATCH_SIZE = 5000 # safely below max batch size
for i in range(0, len(df), BATCH_SIZE):
batch_df = df.iloc[i : i + BATCH_SIZE]
batch_ids = batch_df["_id"].tolist()
batch_docs = batch_df["_doc"].tolist()
batch_metas = [
{k: record[k] for k in metadatas[0].keys() if k in record}
| {"_global_index": record["_global_index"]}
for record in batch_df.to_dict(orient="records")
]
# Use original metadata keys for upsert
batch_metas = [
{k: record[k] for k in metadatas[0].keys() if k in record}
| {"_global_index": record["_global_index"]}
for record in batch_df.to_dict(orient="records")
]
batch_embeds = [embeddings[idx] for idx in batch_df.index]
collection.update(
ids=batch_ids,
# documents=batch_docs,
metadatas=batch_metas,
# embeddings=batch_embeds,
)
logger.info(
"build_global_index_for_all_scriptures:%s: ✅ Updated with %d records",
scripture_name,
len(df),
)
|