metadata
tags:
- spacy
- token-classification
language:
- en
license: MIT
model-index:
- name: en_core_web_lg
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.8537926165
- name: NER Recall
type: recall
value: 0.8478064904
- name: NER F Score
type: f_score
value: 0.850789024
- task:
name: POS
type: token-classification
metrics:
- name: POS Accuracy
type: accuracy
value: 0.9728657496
- task:
name: SENTER
type: token-classification
metrics:
- name: SENTER Precision
type: precision
value: 0.9029447521
- name: SENTER Recall
type: recall
value: 0.8819183323
- name: SENTER F Score
type: f_score
value: 0.8923076923
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Dependencies Accuracy
type: accuracy
value: 0.9184566079
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Dependencies Accuracy
type: accuracy
value: 0.9184566079
Details: https://spacy.io/models/en#en_core_web_lg
English pipeline optimized for CPU. Components: tok2vec, tagger, parser, senter, ner, attribute_ruler, lemmatizer.
| Feature | Description |
|---|---|
| Name | en_core_web_lg |
| Version | 3.1.0 |
| spaCy | >=3.1.0,<3.2.0 |
| Default Pipeline | tok2vec, tagger, parser, attribute_ruler, lemmatizer, ner |
| Components | tok2vec, tagger, parser, senter, attribute_ruler, lemmatizer, ner |
| Vectors | 684830 keys, 684830 unique vectors (300 dimensions) |
| Sources | OntoNotes 5 (Ralph Weischedel, Martha Palmer, Mitchell Marcus, Eduard Hovy, Sameer Pradhan, Lance Ramshaw, Nianwen Xue, Ann Taylor, Jeff Kaufman, Michelle Franchini, Mohammed El-Bachouti, Robert Belvin, Ann Houston) ClearNLP Constituent-to-Dependency Conversion (Emory University) WordNet 3.0 (Princeton University) GloVe Common Crawl (Jeffrey Pennington, Richard Socher, and Christopher D. Manning) |
| License | MIT |
| Author | Explosion |
Label Scheme
View label scheme (114 labels for 4 components)
| Component | Labels |
|---|---|
tagger |
$, '', ,, -LRB-, -RRB-, ., :, ADD, AFX, CC, CD, DT, EX, FW, HYPH, IN, JJ, JJR, JJS, LS, MD, NFP, NN, NNP, NNPS, NNS, PDT, POS, PRP, PRP$, RB, RBR, RBS, RP, SYM, TO, UH, VB, VBD, VBG, VBN, VBP, VBZ, WDT, WP, WP$, WRB, XX, ```` |
parser |
ROOT, acl, acomp, advcl, advmod, agent, amod, appos, attr, aux, auxpass, case, cc, ccomp, compound, conj, csubj, csubjpass, dative, dep, det, dobj, expl, intj, mark, meta, neg, nmod, npadvmod, nsubj, nsubjpass, nummod, oprd, parataxis, pcomp, pobj, poss, preconj, predet, prep, prt, punct, quantmod, relcl, xcomp |
senter |
I, S |
ner |
CARDINAL, DATE, EVENT, FAC, GPE, LANGUAGE, LAW, LOC, MONEY, NORP, ORDINAL, ORG, PERCENT, PERSON, PRODUCT, QUANTITY, TIME, WORK_OF_ART |
Accuracy
| Type | Score |
|---|---|
TOKEN_ACC |
99.93 |
TAG_ACC |
97.29 |
DEP_UAS |
91.85 |
DEP_LAS |
90.02 |
ENTS_P |
85.38 |
ENTS_R |
84.78 |
ENTS_F |
85.08 |
SENTS_P |
90.29 |
SENTS_R |
88.19 |
SENTS_F |
89.23 |