File size: 22,348 Bytes
194ad88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
---
language:
- vi
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dense
- generated_from_trainer
- dataset_size:6066
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: splendor1811/BGE-base-banking-ONE-v0106
widget:
- source_sentence: HUYNHDEANHKHOA COMPANY LIMITED
  sentences:
  - SHYH JIUH INDUSTRIAL CO.,LTD
  - KENG HIN ENGINEERING CO
  - CTTNHHTHIETKE MYTHUAT VA TINHOC HUYNHDEANHKHOA
- source_sentence: YUEQING RONGSHENG ELECTRICAL APPLIANCES LTD.
  sentences:
  - RAUCH FRUCHTSÄFTE GMBH & CO OG
  - YUEQING RONGSHENG INTRODUCED ELECTRICAL APPLIANCES CO., LTD
  - BACH MY TRADING, SERVICES AND CONSTRUCTION COMPANY LIMITED
- source_sentence: ZHENFA TEXTILE COMPANY, LIMITED
  sentences:
  - DATANI LOGISTICS COMPANY LIMITED
  - Quan Pham Electrical Equipment Co., Ltd.
  - ZHENFA TEXTILE CO., LIMITED
- source_sentence: CONG TY TNHH KY THUAT VSI
  sentences:
  - CTCAD SERVICES TRADING COMPANY LIMITED
  - CHAKTOMUK RESOURCES SUPPLY IMPORT EXPORT CO.,LTD
  - VSI ENGINEERING COMPANY LIMITED
- source_sentence: VIET ANH DUONG CO., LTD
  sentences:
  - ROCK GRANITES
  - CTY TNHH VIET ANH DUONG
  - SOVAN SEUNGDEN CO.,LTD
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: BGE-mapping-tool
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 1024
      type: dim_1024
    metrics:
    - type: cosine_accuracy@1
      value: 0.844213649851632
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.9169139465875371
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9540059347181009
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.983679525222552
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.844213649851632
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.8209693372898119
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.8172106824925816
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.7956973293768547
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.04068450507619647
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.11841496782149599
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.1962584728163363
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.38186014447142047
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8055555734311861
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8893975790118221
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8042214818897099
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.8501483679525222
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.9124629080118695
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9525222551928784
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.983679525222552
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.8501483679525222
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.8199802176063304
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.8160237388724035
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.7958456973293768
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.040903524434681704
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.1182842627204645
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.1959109963561002
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.38199438214275006
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8060214331494838
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8915365503273512
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8045717264189338
      name: Cosine Map@100
---

# BGE-mapping-tool

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [splendor1811/BGE-base-banking-ONE-v0106](https://huggingface.co/splendor1811/BGE-base-banking-ONE-v0106) on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [splendor1811/BGE-base-banking-ONE-v0106](https://huggingface.co/splendor1811/BGE-base-banking-ONE-v0106) <!-- at revision 9c233176fc7eb592572824ebb465bbe59997a308 -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - json
- **Language:** vi
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False, 'architecture': 'XLMRobertaModel'})
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("splendor1811/BGE-mapping-tool")
# Run inference
sentences = [
    'VIET ANH DUONG CO., LTD',
    'CTY TNHH VIET ANH DUONG',
    'ROCK GRANITES',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[ 1.0000,  0.9738, -0.0072],
#         [ 0.9738,  1.0000,  0.0011],
#         [-0.0072,  0.0011,  1.0000]])
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Dataset: `dim_1024`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
  ```json
  {
      "truncate_dim": 1024
  }
  ```

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.8442     |
| cosine_accuracy@3   | 0.9169     |
| cosine_accuracy@5   | 0.954      |
| cosine_accuracy@10  | 0.9837     |
| cosine_precision@1  | 0.8442     |
| cosine_precision@3  | 0.821      |
| cosine_precision@5  | 0.8172     |
| cosine_precision@10 | 0.7957     |
| cosine_recall@1     | 0.0407     |
| cosine_recall@3     | 0.1184     |
| cosine_recall@5     | 0.1963     |
| cosine_recall@10    | 0.3819     |
| **cosine_ndcg@10**  | **0.8056** |
| cosine_mrr@10       | 0.8894     |
| cosine_map@100      | 0.8042     |

#### Information Retrieval

* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
  ```json
  {
      "truncate_dim": 768
  }
  ```

| Metric              | Value     |
|:--------------------|:----------|
| cosine_accuracy@1   | 0.8501    |
| cosine_accuracy@3   | 0.9125    |
| cosine_accuracy@5   | 0.9525    |
| cosine_accuracy@10  | 0.9837    |
| cosine_precision@1  | 0.8501    |
| cosine_precision@3  | 0.82      |
| cosine_precision@5  | 0.816     |
| cosine_precision@10 | 0.7958    |
| cosine_recall@1     | 0.0409    |
| cosine_recall@3     | 0.1183    |
| cosine_recall@5     | 0.1959    |
| cosine_recall@10    | 0.382     |
| **cosine_ndcg@10**  | **0.806** |
| cosine_mrr@10       | 0.8915    |
| cosine_map@100      | 0.8046    |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### json

* Dataset: json
* Size: 6,066 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                            | positive                                                                          |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            |
  | details | <ul><li>min: 4 tokens</li><li>mean: 15.22 tokens</li><li>max: 35 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 15.46 tokens</li><li>max: 48 tokens</li></ul> |
* Samples:
  | anchor                                                       | positive                                                  |
  |:-------------------------------------------------------------|:----------------------------------------------------------|
  | <code>ZHONGSHAN CHINHAO MOLD HARDWARE COMPANY LIMITED</code> | <code>ZHONGSHAN CHINHAO MOLD HARDWARE CO., LTD.</code>    |
  | <code>Changshu Longte International Trade Co., Ltd</code>    | <code>CHANGSHU LONGTE INTERNATIONAL TRADE CO., LTD</code> |
  | <code>ACT CHEMICAL AND THERAPEUTIC LABORATORIES SARL</code>  | <code>MEDICAL SUPPLIES PHARMACEUTICALS & EQUIPMENT</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          1024,
          768
      ],
      "matryoshka_weights": [
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `gradient_accumulation_steps`: 8
- `learning_rate`: 2e-05
- `num_train_epochs`: 5
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: False
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 8
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 8
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: False
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `parallelism_config`: None
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `hub_revision`: None
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `liger_kernel_config`: None
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
- `router_mapping`: {}
- `learning_rate_mapping`: {}

</details>

### Training Logs
| Epoch   | Step    | Training Loss | dim_1024_cosine_ndcg@10 | dim_768_cosine_ndcg@10 |
|:-------:|:-------:|:-------------:|:-----------------------:|:----------------------:|
| 0.1054  | 10      | 0.4225        | -                       | -                      |
| 0.2108  | 20      | 0.2415        | -                       | -                      |
| 0.3162  | 30      | 0.1252        | -                       | -                      |
| 0.4216  | 40      | 0.0765        | -                       | -                      |
| 0.5270  | 50      | 0.0573        | -                       | -                      |
| 0.6324  | 60      | 0.0345        | -                       | -                      |
| 0.7378  | 70      | 0.0448        | -                       | -                      |
| 0.8432  | 80      | 0.0355        | -                       | -                      |
| 0.9486  | 90      | 0.0996        | -                       | -                      |
| 1.0     | 95      | -             | 0.7994                  | 0.7994                 |
| 1.0527  | 100     | 0.0194        | -                       | -                      |
| 1.1581  | 110     | 0.0418        | -                       | -                      |
| 1.2635  | 120     | 0.0339        | -                       | -                      |
| 1.3689  | 130     | 0.0427        | -                       | -                      |
| 1.4743  | 140     | 0.0339        | -                       | -                      |
| 1.5797  | 150     | 0.0333        | -                       | -                      |
| 1.6851  | 160     | 0.0396        | -                       | -                      |
| 1.7905  | 170     | 0.0877        | -                       | -                      |
| 1.8959  | 180     | 0.0608        | -                       | -                      |
| 2.0     | 190     | 0.0352        | 0.8037                  | 0.8031                 |
| 2.1054  | 200     | 0.023         | -                       | -                      |
| 2.2108  | 210     | 0.0638        | -                       | -                      |
| 2.3162  | 220     | 0.0401        | -                       | -                      |
| 2.4216  | 230     | 0.0274        | -                       | -                      |
| 2.5270  | 240     | 0.0405        | -                       | -                      |
| 2.6324  | 250     | 0.0305        | -                       | -                      |
| 2.7378  | 260     | 0.0414        | -                       | -                      |
| 2.8432  | 270     | 0.0178        | -                       | -                      |
| 2.9486  | 280     | 0.0535        | -                       | -                      |
| 3.0     | 285     | -             | 0.8008                  | 0.8012                 |
| 3.0527  | 290     | 0.0629        | -                       | -                      |
| 3.1581  | 300     | 0.0283        | -                       | -                      |
| 3.2635  | 310     | 0.0567        | -                       | -                      |
| 3.3689  | 320     | 0.0167        | -                       | -                      |
| 3.4743  | 330     | 0.0349        | -                       | -                      |
| 3.5797  | 340     | 0.053         | -                       | -                      |
| 3.6851  | 350     | 0.0517        | -                       | -                      |
| 3.7905  | 360     | 0.0603        | -                       | -                      |
| 3.8959  | 370     | 0.0323        | -                       | -                      |
| 4.0     | 380     | 0.0229        | 0.8042                  | 0.8055                 |
| 4.1054  | 390     | 0.0476        | -                       | -                      |
| 4.2108  | 400     | 0.06          | -                       | -                      |
| 4.3162  | 410     | 0.0412        | -                       | -                      |
| 4.4216  | 420     | 0.0553        | -                       | -                      |
| 4.5270  | 430     | 0.0446        | -                       | -                      |
| 4.6324  | 440     | 0.016         | -                       | -                      |
| 4.7378  | 450     | 0.0302        | -                       | -                      |
| 4.8432  | 460     | 0.0223        | -                       | -                      |
| 4.9486  | 470     | 0.0649        | -                       | -                      |
| **5.0** | **475** | **-**         | **0.8056**              | **0.806**              |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.11.13
- Sentence Transformers: 5.1.0
- Transformers: 4.56.1
- PyTorch: 2.6.0+cu124
- Accelerate: 1.8.1
- Datasets: 3.6.0
- Tokenizers: 0.22.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->