BGE-mapping-tool
This is a sentence-transformers model finetuned from splendor1811/BGE-base-banking-ONE-v0106 on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: splendor1811/BGE-base-banking-ONE-v0106
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:- json
 
- Language: vi
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False, 'architecture': 'XLMRobertaModel'})
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("splendor1811/BGE-mapping-tool")
# Run inference
sentences = [
    'VIET ANH DUONG CO., LTD',
    'CTY TNHH VIET ANH DUONG',
    'ROCK GRANITES',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[ 1.0000,  0.9738, -0.0072],
#         [ 0.9738,  1.0000,  0.0011],
#         [-0.0072,  0.0011,  1.0000]])
Evaluation
Metrics
Information Retrieval
- Dataset: dim_1024
- Evaluated with InformationRetrievalEvaluatorwith these parameters:{ "truncate_dim": 1024 }
| Metric | Value | 
|---|---|
| cosine_accuracy@1 | 0.8442 | 
| cosine_accuracy@3 | 0.9169 | 
| cosine_accuracy@5 | 0.954 | 
| cosine_accuracy@10 | 0.9837 | 
| cosine_precision@1 | 0.8442 | 
| cosine_precision@3 | 0.821 | 
| cosine_precision@5 | 0.8172 | 
| cosine_precision@10 | 0.7957 | 
| cosine_recall@1 | 0.0407 | 
| cosine_recall@3 | 0.1184 | 
| cosine_recall@5 | 0.1963 | 
| cosine_recall@10 | 0.3819 | 
| cosine_ndcg@10 | 0.8056 | 
| cosine_mrr@10 | 0.8894 | 
| cosine_map@100 | 0.8042 | 
Information Retrieval
- Dataset: dim_768
- Evaluated with InformationRetrievalEvaluatorwith these parameters:{ "truncate_dim": 768 }
| Metric | Value | 
|---|---|
| cosine_accuracy@1 | 0.8501 | 
| cosine_accuracy@3 | 0.9125 | 
| cosine_accuracy@5 | 0.9525 | 
| cosine_accuracy@10 | 0.9837 | 
| cosine_precision@1 | 0.8501 | 
| cosine_precision@3 | 0.82 | 
| cosine_precision@5 | 0.816 | 
| cosine_precision@10 | 0.7958 | 
| cosine_recall@1 | 0.0409 | 
| cosine_recall@3 | 0.1183 | 
| cosine_recall@5 | 0.1959 | 
| cosine_recall@10 | 0.382 | 
| cosine_ndcg@10 | 0.806 | 
| cosine_mrr@10 | 0.8915 | 
| cosine_map@100 | 0.8046 | 
Training Details
Training Dataset
json
- Dataset: json
- Size: 6,066 training samples
- Columns: anchorandpositive
- Approximate statistics based on the first 1000 samples:anchor positive type string string details - min: 4 tokens
- mean: 15.22 tokens
- max: 35 tokens
 - min: 5 tokens
- mean: 15.46 tokens
- max: 48 tokens
 
- Samples:anchor positive ZHONGSHAN CHINHAO MOLD HARDWARE COMPANY LIMITEDZHONGSHAN CHINHAO MOLD HARDWARE CO., LTD.Changshu Longte International Trade Co., LtdCHANGSHU LONGTE INTERNATIONAL TRADE CO., LTDACT CHEMICAL AND THERAPEUTIC LABORATORIES SARLMEDICAL SUPPLIES PHARMACEUTICALS & EQUIPMENT
- Loss: MatryoshkaLosswith these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 1024, 768 ], "matryoshka_weights": [ 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
- eval_strategy: epoch
- gradient_accumulation_steps: 8
- learning_rate: 2e-05
- num_train_epochs: 5
- lr_scheduler_type: cosine
- warmup_ratio: 0.1
- bf16: True
- tf32: False
- load_best_model_at_end: True
- optim: adamw_torch_fused
- batch_sampler: no_duplicates
All Hyperparameters
Click to expand
- overwrite_output_dir: False
- do_predict: False
- eval_strategy: epoch
- prediction_loss_only: True
- per_device_train_batch_size: 8
- per_device_eval_batch_size: 8
- per_gpu_train_batch_size: None
- per_gpu_eval_batch_size: None
- gradient_accumulation_steps: 8
- eval_accumulation_steps: None
- torch_empty_cache_steps: None
- learning_rate: 2e-05
- weight_decay: 0.0
- adam_beta1: 0.9
- adam_beta2: 0.999
- adam_epsilon: 1e-08
- max_grad_norm: 1.0
- num_train_epochs: 5
- max_steps: -1
- lr_scheduler_type: cosine
- lr_scheduler_kwargs: {}
- warmup_ratio: 0.1
- warmup_steps: 0
- log_level: passive
- log_level_replica: warning
- log_on_each_node: True
- logging_nan_inf_filter: True
- save_safetensors: True
- save_on_each_node: False
- save_only_model: False
- restore_callback_states_from_checkpoint: False
- no_cuda: False
- use_cpu: False
- use_mps_device: False
- seed: 42
- data_seed: None
- jit_mode_eval: False
- use_ipex: False
- bf16: True
- fp16: False
- fp16_opt_level: O1
- half_precision_backend: auto
- bf16_full_eval: False
- fp16_full_eval: False
- tf32: False
- local_rank: 0
- ddp_backend: None
- tpu_num_cores: None
- tpu_metrics_debug: False
- debug: []
- dataloader_drop_last: False
- dataloader_num_workers: 0
- dataloader_prefetch_factor: None
- past_index: -1
- disable_tqdm: False
- remove_unused_columns: True
- label_names: None
- load_best_model_at_end: True
- ignore_data_skip: False
- fsdp: []
- fsdp_min_num_params: 0
- fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- fsdp_transformer_layer_cls_to_wrap: None
- accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- parallelism_config: None
- deepspeed: None
- label_smoothing_factor: 0.0
- optim: adamw_torch_fused
- optim_args: None
- adafactor: False
- group_by_length: False
- length_column_name: length
- ddp_find_unused_parameters: None
- ddp_bucket_cap_mb: None
- ddp_broadcast_buffers: False
- dataloader_pin_memory: True
- dataloader_persistent_workers: False
- skip_memory_metrics: True
- use_legacy_prediction_loop: False
- push_to_hub: False
- resume_from_checkpoint: None
- hub_model_id: None
- hub_strategy: every_save
- hub_private_repo: None
- hub_always_push: False
- hub_revision: None
- gradient_checkpointing: False
- gradient_checkpointing_kwargs: None
- include_inputs_for_metrics: False
- include_for_metrics: []
- eval_do_concat_batches: True
- fp16_backend: auto
- push_to_hub_model_id: None
- push_to_hub_organization: None
- mp_parameters:
- auto_find_batch_size: False
- full_determinism: False
- torchdynamo: None
- ray_scope: last
- ddp_timeout: 1800
- torch_compile: False
- torch_compile_backend: None
- torch_compile_mode: None
- include_tokens_per_second: False
- include_num_input_tokens_seen: False
- neftune_noise_alpha: None
- optim_target_modules: None
- batch_eval_metrics: False
- eval_on_start: False
- use_liger_kernel: False
- liger_kernel_config: None
- eval_use_gather_object: False
- average_tokens_across_devices: False
- prompts: None
- batch_sampler: no_duplicates
- multi_dataset_batch_sampler: proportional
- router_mapping: {}
- learning_rate_mapping: {}
Training Logs
| Epoch | Step | Training Loss | dim_1024_cosine_ndcg@10 | dim_768_cosine_ndcg@10 | 
|---|---|---|---|---|
| 0.1054 | 10 | 0.4225 | - | - | 
| 0.2108 | 20 | 0.2415 | - | - | 
| 0.3162 | 30 | 0.1252 | - | - | 
| 0.4216 | 40 | 0.0765 | - | - | 
| 0.5270 | 50 | 0.0573 | - | - | 
| 0.6324 | 60 | 0.0345 | - | - | 
| 0.7378 | 70 | 0.0448 | - | - | 
| 0.8432 | 80 | 0.0355 | - | - | 
| 0.9486 | 90 | 0.0996 | - | - | 
| 1.0 | 95 | - | 0.7994 | 0.7994 | 
| 1.0527 | 100 | 0.0194 | - | - | 
| 1.1581 | 110 | 0.0418 | - | - | 
| 1.2635 | 120 | 0.0339 | - | - | 
| 1.3689 | 130 | 0.0427 | - | - | 
| 1.4743 | 140 | 0.0339 | - | - | 
| 1.5797 | 150 | 0.0333 | - | - | 
| 1.6851 | 160 | 0.0396 | - | - | 
| 1.7905 | 170 | 0.0877 | - | - | 
| 1.8959 | 180 | 0.0608 | - | - | 
| 2.0 | 190 | 0.0352 | 0.8037 | 0.8031 | 
| 2.1054 | 200 | 0.023 | - | - | 
| 2.2108 | 210 | 0.0638 | - | - | 
| 2.3162 | 220 | 0.0401 | - | - | 
| 2.4216 | 230 | 0.0274 | - | - | 
| 2.5270 | 240 | 0.0405 | - | - | 
| 2.6324 | 250 | 0.0305 | - | - | 
| 2.7378 | 260 | 0.0414 | - | - | 
| 2.8432 | 270 | 0.0178 | - | - | 
| 2.9486 | 280 | 0.0535 | - | - | 
| 3.0 | 285 | - | 0.8008 | 0.8012 | 
| 3.0527 | 290 | 0.0629 | - | - | 
| 3.1581 | 300 | 0.0283 | - | - | 
| 3.2635 | 310 | 0.0567 | - | - | 
| 3.3689 | 320 | 0.0167 | - | - | 
| 3.4743 | 330 | 0.0349 | - | - | 
| 3.5797 | 340 | 0.053 | - | - | 
| 3.6851 | 350 | 0.0517 | - | - | 
| 3.7905 | 360 | 0.0603 | - | - | 
| 3.8959 | 370 | 0.0323 | - | - | 
| 4.0 | 380 | 0.0229 | 0.8042 | 0.8055 | 
| 4.1054 | 390 | 0.0476 | - | - | 
| 4.2108 | 400 | 0.06 | - | - | 
| 4.3162 | 410 | 0.0412 | - | - | 
| 4.4216 | 420 | 0.0553 | - | - | 
| 4.5270 | 430 | 0.0446 | - | - | 
| 4.6324 | 440 | 0.016 | - | - | 
| 4.7378 | 450 | 0.0302 | - | - | 
| 4.8432 | 460 | 0.0223 | - | - | 
| 4.9486 | 470 | 0.0649 | - | - | 
| 5.0 | 475 | - | 0.8056 | 0.806 | 
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.13
- Sentence Transformers: 5.1.0
- Transformers: 4.56.1
- PyTorch: 2.6.0+cu124
- Accelerate: 1.8.1
- Datasets: 3.6.0
- Tokenizers: 0.22.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
- Downloads last month
- 6
Model tree for splendor1811/BGE-mapping-tool
Base model
splendor1811/BGE-base-banking-ONE-v0106Evaluation results
- Cosine Accuracy@1 on dim 1024self-reported0.844
- Cosine Accuracy@3 on dim 1024self-reported0.917
- Cosine Accuracy@5 on dim 1024self-reported0.954
- Cosine Accuracy@10 on dim 1024self-reported0.984
- Cosine Precision@1 on dim 1024self-reported0.844
- Cosine Precision@3 on dim 1024self-reported0.821
- Cosine Precision@5 on dim 1024self-reported0.817
- Cosine Precision@10 on dim 1024self-reported0.796
- Cosine Recall@1 on dim 1024self-reported0.041
- Cosine Recall@3 on dim 1024self-reported0.118