BGE-mapping-tool / README.md
splendor1811's picture
Add new SentenceTransformer model
194ad88 verified
metadata
language:
  - vi
license: apache-2.0
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - dense
  - generated_from_trainer
  - dataset_size:6066
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
base_model: splendor1811/BGE-base-banking-ONE-v0106
widget:
  - source_sentence: HUYNHDEANHKHOA COMPANY LIMITED
    sentences:
      - SHYH JIUH INDUSTRIAL CO.,LTD
      - KENG HIN ENGINEERING CO
      - CTTNHHTHIETKE MYTHUAT VA TINHOC HUYNHDEANHKHOA
  - source_sentence: YUEQING RONGSHENG ELECTRICAL APPLIANCES LTD.
    sentences:
      - RAUCH FRUCHTSÄFTE GMBH & CO OG
      - YUEQING RONGSHENG INTRODUCED ELECTRICAL APPLIANCES CO., LTD
      - BACH MY TRADING, SERVICES AND CONSTRUCTION COMPANY LIMITED
  - source_sentence: ZHENFA TEXTILE COMPANY, LIMITED
    sentences:
      - DATANI LOGISTICS COMPANY LIMITED
      - Quan Pham Electrical Equipment Co., Ltd.
      - ZHENFA TEXTILE CO., LIMITED
  - source_sentence: CONG TY TNHH KY THUAT VSI
    sentences:
      - CTCAD SERVICES TRADING COMPANY LIMITED
      - CHAKTOMUK RESOURCES SUPPLY IMPORT EXPORT CO.,LTD
      - VSI ENGINEERING COMPANY LIMITED
  - source_sentence: VIET ANH DUONG CO., LTD
    sentences:
      - ROCK GRANITES
      - CTY TNHH VIET ANH DUONG
      - SOVAN SEUNGDEN CO.,LTD
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
model-index:
  - name: BGE-mapping-tool
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 1024
          type: dim_1024
        metrics:
          - type: cosine_accuracy@1
            value: 0.844213649851632
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.9169139465875371
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.9540059347181009
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.983679525222552
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.844213649851632
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.8209693372898119
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.8172106824925816
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.7956973293768547
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.04068450507619647
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.11841496782149599
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.1962584728163363
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.38186014447142047
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.8055555734311861
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.8893975790118221
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.8042214818897099
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 768
          type: dim_768
        metrics:
          - type: cosine_accuracy@1
            value: 0.8501483679525222
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.9124629080118695
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.9525222551928784
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.983679525222552
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.8501483679525222
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.8199802176063304
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.8160237388724035
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.7958456973293768
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.040903524434681704
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.1182842627204645
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.1959109963561002
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.38199438214275006
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.8060214331494838
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.8915365503273512
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.8045717264189338
            name: Cosine Map@100

BGE-mapping-tool

This is a sentence-transformers model finetuned from splendor1811/BGE-base-banking-ONE-v0106 on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: splendor1811/BGE-base-banking-ONE-v0106
  • Maximum Sequence Length: 8192 tokens
  • Output Dimensionality: 1024 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • json
  • Language: vi
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False, 'architecture': 'XLMRobertaModel'})
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("splendor1811/BGE-mapping-tool")
# Run inference
sentences = [
    'VIET ANH DUONG CO., LTD',
    'CTY TNHH VIET ANH DUONG',
    'ROCK GRANITES',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[ 1.0000,  0.9738, -0.0072],
#         [ 0.9738,  1.0000,  0.0011],
#         [-0.0072,  0.0011,  1.0000]])

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.8442
cosine_accuracy@3 0.9169
cosine_accuracy@5 0.954
cosine_accuracy@10 0.9837
cosine_precision@1 0.8442
cosine_precision@3 0.821
cosine_precision@5 0.8172
cosine_precision@10 0.7957
cosine_recall@1 0.0407
cosine_recall@3 0.1184
cosine_recall@5 0.1963
cosine_recall@10 0.3819
cosine_ndcg@10 0.8056
cosine_mrr@10 0.8894
cosine_map@100 0.8042

Information Retrieval

Metric Value
cosine_accuracy@1 0.8501
cosine_accuracy@3 0.9125
cosine_accuracy@5 0.9525
cosine_accuracy@10 0.9837
cosine_precision@1 0.8501
cosine_precision@3 0.82
cosine_precision@5 0.816
cosine_precision@10 0.7958
cosine_recall@1 0.0409
cosine_recall@3 0.1183
cosine_recall@5 0.1959
cosine_recall@10 0.382
cosine_ndcg@10 0.806
cosine_mrr@10 0.8915
cosine_map@100 0.8046

Training Details

Training Dataset

json

  • Dataset: json
  • Size: 6,066 training samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 1000 samples:
    anchor positive
    type string string
    details
    • min: 4 tokens
    • mean: 15.22 tokens
    • max: 35 tokens
    • min: 5 tokens
    • mean: 15.46 tokens
    • max: 48 tokens
  • Samples:
    anchor positive
    ZHONGSHAN CHINHAO MOLD HARDWARE COMPANY LIMITED ZHONGSHAN CHINHAO MOLD HARDWARE CO., LTD.
    Changshu Longte International Trade Co., Ltd CHANGSHU LONGTE INTERNATIONAL TRADE CO., LTD
    ACT CHEMICAL AND THERAPEUTIC LABORATORIES SARL MEDICAL SUPPLIES PHARMACEUTICALS & EQUIPMENT
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            1024,
            768
        ],
        "matryoshka_weights": [
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • gradient_accumulation_steps: 8
  • learning_rate: 2e-05
  • num_train_epochs: 5
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • tf32: False
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 8
  • per_device_eval_batch_size: 8
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 8
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: False
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • parallelism_config: None
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • hub_revision: None
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • liger_kernel_config: None
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Epoch Step Training Loss dim_1024_cosine_ndcg@10 dim_768_cosine_ndcg@10
0.1054 10 0.4225 - -
0.2108 20 0.2415 - -
0.3162 30 0.1252 - -
0.4216 40 0.0765 - -
0.5270 50 0.0573 - -
0.6324 60 0.0345 - -
0.7378 70 0.0448 - -
0.8432 80 0.0355 - -
0.9486 90 0.0996 - -
1.0 95 - 0.7994 0.7994
1.0527 100 0.0194 - -
1.1581 110 0.0418 - -
1.2635 120 0.0339 - -
1.3689 130 0.0427 - -
1.4743 140 0.0339 - -
1.5797 150 0.0333 - -
1.6851 160 0.0396 - -
1.7905 170 0.0877 - -
1.8959 180 0.0608 - -
2.0 190 0.0352 0.8037 0.8031
2.1054 200 0.023 - -
2.2108 210 0.0638 - -
2.3162 220 0.0401 - -
2.4216 230 0.0274 - -
2.5270 240 0.0405 - -
2.6324 250 0.0305 - -
2.7378 260 0.0414 - -
2.8432 270 0.0178 - -
2.9486 280 0.0535 - -
3.0 285 - 0.8008 0.8012
3.0527 290 0.0629 - -
3.1581 300 0.0283 - -
3.2635 310 0.0567 - -
3.3689 320 0.0167 - -
3.4743 330 0.0349 - -
3.5797 340 0.053 - -
3.6851 350 0.0517 - -
3.7905 360 0.0603 - -
3.8959 370 0.0323 - -
4.0 380 0.0229 0.8042 0.8055
4.1054 390 0.0476 - -
4.2108 400 0.06 - -
4.3162 410 0.0412 - -
4.4216 420 0.0553 - -
4.5270 430 0.0446 - -
4.6324 440 0.016 - -
4.7378 450 0.0302 - -
4.8432 460 0.0223 - -
4.9486 470 0.0649 - -
5.0 475 - 0.8056 0.806
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.11.13
  • Sentence Transformers: 5.1.0
  • Transformers: 4.56.1
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.8.1
  • Datasets: 3.6.0
  • Tokenizers: 0.22.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}