BGE-mapping-tool
This is a sentence-transformers model finetuned from splendor1811/BGE-base-banking-ONE-v0106 on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: splendor1811/BGE-base-banking-ONE-v0106
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: vi
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False, 'architecture': 'XLMRobertaModel'})
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("splendor1811/BGE-mapping-tool_epoch3")
# Run inference
sentences = [
'VIET ANH DUONG CO., LTD',
'CTY TNHH VIET ANH DUONG',
'ROCK GRANITES',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[ 1.0000, 0.9738, -0.0072],
# [ 0.9738, 1.0000, 0.0011],
# [-0.0072, 0.0011, 1.0000]])
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_1024 - Evaluated with
InformationRetrievalEvaluatorwith these parameters:{ "truncate_dim": 1024 }
| Metric | Value |
|---|---|
| cosine_accuracy@1 | 0.8442 |
| cosine_accuracy@3 | 0.9169 |
| cosine_accuracy@5 | 0.954 |
| cosine_accuracy@10 | 0.9837 |
| cosine_precision@1 | 0.8442 |
| cosine_precision@3 | 0.821 |
| cosine_precision@5 | 0.8172 |
| cosine_precision@10 | 0.7957 |
| cosine_recall@1 | 0.0407 |
| cosine_recall@3 | 0.1184 |
| cosine_recall@5 | 0.1963 |
| cosine_recall@10 | 0.3819 |
| cosine_ndcg@10 | 0.8056 |
| cosine_mrr@10 | 0.8894 |
| cosine_map@100 | 0.8042 |
Information Retrieval
- Dataset:
dim_768 - Evaluated with
InformationRetrievalEvaluatorwith these parameters:{ "truncate_dim": 768 }
| Metric | Value |
|---|---|
| cosine_accuracy@1 | 0.8501 |
| cosine_accuracy@3 | 0.9125 |
| cosine_accuracy@5 | 0.9525 |
| cosine_accuracy@10 | 0.9837 |
| cosine_precision@1 | 0.8501 |
| cosine_precision@3 | 0.82 |
| cosine_precision@5 | 0.816 |
| cosine_precision@10 | 0.7958 |
| cosine_recall@1 | 0.0409 |
| cosine_recall@3 | 0.1183 |
| cosine_recall@5 | 0.1959 |
| cosine_recall@10 | 0.382 |
| cosine_ndcg@10 | 0.806 |
| cosine_mrr@10 | 0.8915 |
| cosine_map@100 | 0.8046 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 6,066 training samples
- Columns:
anchorandpositive - Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 4 tokens
- mean: 15.22 tokens
- max: 35 tokens
- min: 5 tokens
- mean: 15.46 tokens
- max: 48 tokens
- Samples:
anchor positive ZHONGSHAN CHINHAO MOLD HARDWARE COMPANY LIMITEDZHONGSHAN CHINHAO MOLD HARDWARE CO., LTD.Changshu Longte International Trade Co., LtdCHANGSHU LONGTE INTERNATIONAL TRADE CO., LTDACT CHEMICAL AND THERAPEUTIC LABORATORIES SARLMEDICAL SUPPLIES PHARMACEUTICALS & EQUIPMENT - Loss:
MatryoshkaLosswith these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 1024, 768 ], "matryoshka_weights": [ 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: epochgradient_accumulation_steps: 8learning_rate: 2e-05num_train_epochs: 5lr_scheduler_type: cosinewarmup_ratio: 0.1bf16: Truetf32: Falseload_best_model_at_end: Trueoptim: adamw_torch_fusedbatch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: epochprediction_loss_only: Trueper_device_train_batch_size: 8per_device_eval_batch_size: 8per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 8eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 5max_steps: -1lr_scheduler_type: cosinelr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Truefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Falselocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config: Nonedeepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torch_fusedoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportionalrouter_mapping: {}learning_rate_mapping: {}
Training Logs
| Epoch | Step | Training Loss | dim_1024_cosine_ndcg@10 | dim_768_cosine_ndcg@10 |
|---|---|---|---|---|
| 0.1054 | 10 | 0.4225 | - | - |
| 0.2108 | 20 | 0.2415 | - | - |
| 0.3162 | 30 | 0.1252 | - | - |
| 0.4216 | 40 | 0.0765 | - | - |
| 0.5270 | 50 | 0.0573 | - | - |
| 0.6324 | 60 | 0.0345 | - | - |
| 0.7378 | 70 | 0.0448 | - | - |
| 0.8432 | 80 | 0.0355 | - | - |
| 0.9486 | 90 | 0.0996 | - | - |
| 1.0 | 95 | - | 0.7994 | 0.7994 |
| 1.0527 | 100 | 0.0194 | - | - |
| 1.1581 | 110 | 0.0418 | - | - |
| 1.2635 | 120 | 0.0339 | - | - |
| 1.3689 | 130 | 0.0427 | - | - |
| 1.4743 | 140 | 0.0339 | - | - |
| 1.5797 | 150 | 0.0333 | - | - |
| 1.6851 | 160 | 0.0396 | - | - |
| 1.7905 | 170 | 0.0877 | - | - |
| 1.8959 | 180 | 0.0608 | - | - |
| 2.0 | 190 | 0.0352 | 0.8037 | 0.8031 |
| 2.1054 | 200 | 0.023 | - | - |
| 2.2108 | 210 | 0.0638 | - | - |
| 2.3162 | 220 | 0.0401 | - | - |
| 2.4216 | 230 | 0.0274 | - | - |
| 2.5270 | 240 | 0.0405 | - | - |
| 2.6324 | 250 | 0.0305 | - | - |
| 2.7378 | 260 | 0.0414 | - | - |
| 2.8432 | 270 | 0.0178 | - | - |
| 2.9486 | 280 | 0.0535 | - | - |
| 3.0 | 285 | - | 0.8008 | 0.8012 |
| 3.0527 | 290 | 0.0629 | - | - |
| 3.1581 | 300 | 0.0283 | - | - |
| 3.2635 | 310 | 0.0567 | - | - |
| 3.3689 | 320 | 0.0167 | - | - |
| 3.4743 | 330 | 0.0349 | - | - |
| 3.5797 | 340 | 0.053 | - | - |
| 3.6851 | 350 | 0.0517 | - | - |
| 3.7905 | 360 | 0.0603 | - | - |
| 3.8959 | 370 | 0.0323 | - | - |
| 4.0 | 380 | 0.0229 | 0.8042 | 0.8055 |
| 4.1054 | 390 | 0.0476 | - | - |
| 4.2108 | 400 | 0.06 | - | - |
| 4.3162 | 410 | 0.0412 | - | - |
| 4.4216 | 420 | 0.0553 | - | - |
| 4.5270 | 430 | 0.0446 | - | - |
| 4.6324 | 440 | 0.016 | - | - |
| 4.7378 | 450 | 0.0302 | - | - |
| 4.8432 | 460 | 0.0223 | - | - |
| 4.9486 | 470 | 0.0649 | - | - |
| 5.0 | 475 | - | 0.8056 | 0.806 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.13
- Sentence Transformers: 5.1.0
- Transformers: 4.56.1
- PyTorch: 2.6.0+cu124
- Accelerate: 1.8.1
- Datasets: 3.6.0
- Tokenizers: 0.22.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 2
Model tree for splendor1811/BGE-mapping-tool_epoch3
Base model
splendor1811/BGE-base-banking-ONE-v0106Evaluation results
- Cosine Accuracy@1 on dim 1024self-reported0.844
- Cosine Accuracy@3 on dim 1024self-reported0.917
- Cosine Accuracy@5 on dim 1024self-reported0.954
- Cosine Accuracy@10 on dim 1024self-reported0.984
- Cosine Precision@1 on dim 1024self-reported0.844
- Cosine Precision@3 on dim 1024self-reported0.821
- Cosine Precision@5 on dim 1024self-reported0.817
- Cosine Precision@10 on dim 1024self-reported0.796
- Cosine Recall@1 on dim 1024self-reported0.041
- Cosine Recall@3 on dim 1024self-reported0.118