BGE-mapping-tool

This is a sentence-transformers model finetuned from splendor1811/BGE-base-banking-ONE-v0106 on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: splendor1811/BGE-base-banking-ONE-v0106
  • Maximum Sequence Length: 8192 tokens
  • Output Dimensionality: 1024 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • json
  • Language: vi
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False, 'architecture': 'XLMRobertaModel'})
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("splendor1811/BGE-mapping-tool_epoch3")
# Run inference
sentences = [
    'VIET ANH DUONG CO., LTD',
    'CTY TNHH VIET ANH DUONG',
    'ROCK GRANITES',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[ 1.0000,  0.9738, -0.0072],
#         [ 0.9738,  1.0000,  0.0011],
#         [-0.0072,  0.0011,  1.0000]])

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.8442
cosine_accuracy@3 0.9169
cosine_accuracy@5 0.954
cosine_accuracy@10 0.9837
cosine_precision@1 0.8442
cosine_precision@3 0.821
cosine_precision@5 0.8172
cosine_precision@10 0.7957
cosine_recall@1 0.0407
cosine_recall@3 0.1184
cosine_recall@5 0.1963
cosine_recall@10 0.3819
cosine_ndcg@10 0.8056
cosine_mrr@10 0.8894
cosine_map@100 0.8042

Information Retrieval

Metric Value
cosine_accuracy@1 0.8501
cosine_accuracy@3 0.9125
cosine_accuracy@5 0.9525
cosine_accuracy@10 0.9837
cosine_precision@1 0.8501
cosine_precision@3 0.82
cosine_precision@5 0.816
cosine_precision@10 0.7958
cosine_recall@1 0.0409
cosine_recall@3 0.1183
cosine_recall@5 0.1959
cosine_recall@10 0.382
cosine_ndcg@10 0.806
cosine_mrr@10 0.8915
cosine_map@100 0.8046

Training Details

Training Dataset

json

  • Dataset: json
  • Size: 6,066 training samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 1000 samples:
    anchor positive
    type string string
    details
    • min: 4 tokens
    • mean: 15.22 tokens
    • max: 35 tokens
    • min: 5 tokens
    • mean: 15.46 tokens
    • max: 48 tokens
  • Samples:
    anchor positive
    ZHONGSHAN CHINHAO MOLD HARDWARE COMPANY LIMITED ZHONGSHAN CHINHAO MOLD HARDWARE CO., LTD.
    Changshu Longte International Trade Co., Ltd CHANGSHU LONGTE INTERNATIONAL TRADE CO., LTD
    ACT CHEMICAL AND THERAPEUTIC LABORATORIES SARL MEDICAL SUPPLIES PHARMACEUTICALS & EQUIPMENT
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            1024,
            768
        ],
        "matryoshka_weights": [
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • gradient_accumulation_steps: 8
  • learning_rate: 2e-05
  • num_train_epochs: 5
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • tf32: False
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 8
  • per_device_eval_batch_size: 8
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 8
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: False
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • parallelism_config: None
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • hub_revision: None
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • liger_kernel_config: None
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Epoch Step Training Loss dim_1024_cosine_ndcg@10 dim_768_cosine_ndcg@10
0.1054 10 0.4225 - -
0.2108 20 0.2415 - -
0.3162 30 0.1252 - -
0.4216 40 0.0765 - -
0.5270 50 0.0573 - -
0.6324 60 0.0345 - -
0.7378 70 0.0448 - -
0.8432 80 0.0355 - -
0.9486 90 0.0996 - -
1.0 95 - 0.7994 0.7994
1.0527 100 0.0194 - -
1.1581 110 0.0418 - -
1.2635 120 0.0339 - -
1.3689 130 0.0427 - -
1.4743 140 0.0339 - -
1.5797 150 0.0333 - -
1.6851 160 0.0396 - -
1.7905 170 0.0877 - -
1.8959 180 0.0608 - -
2.0 190 0.0352 0.8037 0.8031
2.1054 200 0.023 - -
2.2108 210 0.0638 - -
2.3162 220 0.0401 - -
2.4216 230 0.0274 - -
2.5270 240 0.0405 - -
2.6324 250 0.0305 - -
2.7378 260 0.0414 - -
2.8432 270 0.0178 - -
2.9486 280 0.0535 - -
3.0 285 - 0.8008 0.8012
3.0527 290 0.0629 - -
3.1581 300 0.0283 - -
3.2635 310 0.0567 - -
3.3689 320 0.0167 - -
3.4743 330 0.0349 - -
3.5797 340 0.053 - -
3.6851 350 0.0517 - -
3.7905 360 0.0603 - -
3.8959 370 0.0323 - -
4.0 380 0.0229 0.8042 0.8055
4.1054 390 0.0476 - -
4.2108 400 0.06 - -
4.3162 410 0.0412 - -
4.4216 420 0.0553 - -
4.5270 430 0.0446 - -
4.6324 440 0.016 - -
4.7378 450 0.0302 - -
4.8432 460 0.0223 - -
4.9486 470 0.0649 - -
5.0 475 - 0.8056 0.806
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.11.13
  • Sentence Transformers: 5.1.0
  • Transformers: 4.56.1
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.8.1
  • Datasets: 3.6.0
  • Tokenizers: 0.22.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
2
Safetensors
Model size
0.6B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for splendor1811/BGE-mapping-tool_epoch3

Finetuned
(3)
this model

Evaluation results