|
|
--- |
|
|
license: apache-2.0 |
|
|
base_model: openai/whisper-large-v3 |
|
|
tags: |
|
|
- generated_from_trainer |
|
|
metrics: |
|
|
- wer |
|
|
model-index: |
|
|
- name: COPAS-withctrl-whisper-lg-3-Dec4 |
|
|
results: [] |
|
|
--- |
|
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
|
|
# COPAS-withctrl-whisper-lg-3-Dec4 |
|
|
|
|
|
This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on an unknown dataset. |
|
|
It achieves the following results on the evaluation set: |
|
|
- Loss: 0.0830 |
|
|
- Wer: 22.8522 |
|
|
|
|
|
## Model description |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Intended uses & limitations |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Training and evaluation data |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Training procedure |
|
|
|
|
|
### Training hyperparameters |
|
|
|
|
|
The following hyperparameters were used during training: |
|
|
- learning_rate: 1e-05 |
|
|
- train_batch_size: 8 |
|
|
- eval_batch_size: 8 |
|
|
- seed: 42 |
|
|
- gradient_accumulation_steps: 2 |
|
|
- total_train_batch_size: 16 |
|
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
|
- lr_scheduler_type: linear |
|
|
- lr_scheduler_warmup_steps: 100 |
|
|
- num_epochs: 100 |
|
|
- mixed_precision_training: Native AMP |
|
|
|
|
|
### Training results |
|
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|
|:-------------:|:-------:|:----:|:---------------:|:-------:| |
|
|
| 0.7468 | 1.2048 | 100 | 0.3724 | 30.8849 | |
|
|
| 0.1779 | 2.4096 | 200 | 0.1806 | 26.6323 | |
|
|
| 0.0631 | 3.6145 | 300 | 0.1187 | 25.4296 | |
|
|
| 0.031 | 4.8193 | 400 | 0.1113 | 25.2148 | |
|
|
| 0.0165 | 6.0241 | 500 | 0.0997 | 25.0 | |
|
|
| 0.0104 | 7.2289 | 600 | 0.1012 | 23.7328 | |
|
|
| 0.0062 | 8.4337 | 700 | 0.1017 | 25.3651 | |
|
|
| 0.0053 | 9.6386 | 800 | 0.0928 | 24.0979 | |
|
|
| 0.0051 | 10.8434 | 900 | 0.0956 | 24.9356 | |
|
|
| 0.004 | 12.0482 | 1000 | 0.0868 | 23.3462 | |
|
|
| 0.0018 | 13.2530 | 1100 | 0.0907 | 23.9905 | |
|
|
| 0.0022 | 14.4578 | 1200 | 0.0915 | 23.3247 | |
|
|
| 0.0025 | 15.6627 | 1300 | 0.0871 | 23.1744 | |
|
|
| 0.0029 | 16.8675 | 1400 | 0.0930 | 23.8832 | |
|
|
| 0.0025 | 18.0723 | 1500 | 0.0909 | 23.8617 | |
|
|
| 0.0029 | 19.2771 | 1600 | 0.0818 | 23.0455 | |
|
|
| 0.0027 | 20.4819 | 1700 | 0.0984 | 24.1409 | |
|
|
| 0.0015 | 21.6867 | 1800 | 0.0904 | 23.8832 | |
|
|
| 0.0009 | 22.8916 | 1900 | 0.0933 | 23.5610 | |
|
|
| 0.0013 | 24.0964 | 2000 | 0.0917 | 23.9261 | |
|
|
| 0.0016 | 25.3012 | 2100 | 0.0881 | 23.7758 | |
|
|
| 0.0037 | 26.5060 | 2200 | 0.0983 | 24.4416 | |
|
|
| 0.0039 | 27.7108 | 2300 | 0.1022 | 25.0215 | |
|
|
| 0.0027 | 28.9157 | 2400 | 0.0839 | 23.4536 | |
|
|
| 0.0032 | 30.1205 | 2500 | 0.0768 | 23.8617 | |
|
|
| 0.0012 | 31.3253 | 2600 | 0.0810 | 24.8497 | |
|
|
| 0.0006 | 32.5301 | 2700 | 0.0809 | 24.8926 | |
|
|
| 0.0012 | 33.7349 | 2800 | 0.0738 | 23.7543 | |
|
|
| 0.0012 | 34.9398 | 2900 | 0.0730 | 23.8187 | |
|
|
| 0.0015 | 36.1446 | 3000 | 0.0793 | 23.5180 | |
|
|
| 0.0015 | 37.3494 | 3100 | 0.0813 | 23.9046 | |
|
|
| 0.0008 | 38.5542 | 3200 | 0.0784 | 23.2603 | |
|
|
| 0.0006 | 39.7590 | 3300 | 0.0844 | 22.9596 | |
|
|
| 0.0006 | 40.9639 | 3400 | 0.0798 | 21.9502 | |
|
|
| 0.0004 | 42.1687 | 3500 | 0.0785 | 22.4442 | |
|
|
| 0.0001 | 43.3735 | 3600 | 0.0792 | 22.6589 | |
|
|
| 0.0 | 44.5783 | 3700 | 0.0795 | 22.0361 | |
|
|
| 0.0 | 45.7831 | 3800 | 0.0799 | 22.5515 | |
|
|
| 0.0 | 46.9880 | 3900 | 0.0803 | 23.0026 | |
|
|
| 0.0 | 48.1928 | 4000 | 0.0807 | 23.2388 | |
|
|
| 0.0 | 49.3976 | 4100 | 0.0809 | 23.1100 | |
|
|
| 0.0 | 50.6024 | 4200 | 0.0812 | 22.9381 | |
|
|
| 0.0 | 51.8072 | 4300 | 0.0815 | 22.9381 | |
|
|
| 0.0 | 53.0120 | 4400 | 0.0816 | 22.9381 | |
|
|
| 0.0 | 54.2169 | 4500 | 0.0818 | 23.0241 | |
|
|
| 0.0 | 55.4217 | 4600 | 0.0820 | 23.0241 | |
|
|
| 0.0 | 56.6265 | 4700 | 0.0822 | 22.8308 | |
|
|
| 0.0 | 57.8313 | 4800 | 0.0823 | 22.8952 | |
|
|
| 0.0 | 59.0361 | 4900 | 0.0825 | 22.8737 | |
|
|
| 0.0 | 60.2410 | 5000 | 0.0826 | 22.8952 | |
|
|
| 0.0 | 61.4458 | 5100 | 0.0827 | 22.8522 | |
|
|
| 0.0 | 62.6506 | 5200 | 0.0829 | 22.8522 | |
|
|
| 0.0 | 63.8554 | 5300 | 0.0830 | 22.8522 | |
|
|
|
|
|
|
|
|
### Framework versions |
|
|
|
|
|
- Transformers 4.43.4 |
|
|
- Pytorch 2.4.1 |
|
|
- Datasets 3.0.0 |
|
|
- Tokenizers 0.19.1 |
|
|
|