sultanbi/e5-base-kazakh

This is a sentence-transformers model finetuned from intfloat/multilingual-e5-base on a translated Kazakh version of the SNLI dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: intfloat/multilingual-e5-base
  • Maximum Sequence Length: 128 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the ๐Ÿค— Hub
model = SentenceTransformer("sultanbi/e5-base-kazakh")
# Run inference
sentences = [
    'query: ะา› ะบำฉะนะปะตะบ ะบะธะณะตะฝ ะฐา›า›าฑะฑะฐ ำ™ะนะตะป ะณาฏะปะดั– ะฐา“ะฐัˆั‚ะฐ ะฐา› า›าฑัั‚ั‹ าฑัั‚ะฐะฟ ะพั‚ั‹ั€.',
    'query: ะ‘ะฐะปะฐะปะฐั€ ะบาฏะปั–ะผัั–ั€ะตะฟ, ะบะฐะผะตั€ะฐา“ะฐ า›ะพะป ะฑาฑะปา“ะฐะฟ ั‚าฑั€.',
    'query: าฎัˆ ะฑะฐะปะฐ ะบำฉะป ะถะฐา“ะฐัั‹ะฝะดะฐ ั‚าฑั€.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Evaluation and comparison against multilingual-e5-base in kazakh tasks

Task / Dataset Metric multilingual-e5-base e5-base-kazakh ฮ” (absolute) Description
Kazakh SNLI (validation set) retrieval R@1 0.433 0.887 +0.454 Monolingual semantic retrieval on translated SNLI (validation set)
R@5 0.619 0.984 +0.365
R@10 0.710 0.994 +0.284
STS-B (val, Kazakh) Pearson 0.708 0.817 +0.109 Semantic similarity correlation (machine-translated STS-B)
Spearman 0.721 0.825 +0.104
Triplet Accuracy โ€” 0.802 0.941 +0.139 Monolingual entailment discrimination

Framework Versions

  • Python: 3.11.13
  • Sentence Transformers: 4.1.0
  • Transformers: 4.52.4
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.8.1
  • Datasets: 3.6.0
  • Tokenizers: 0.21.2

Citation

BibTeX

@article{wang2024multilingual,
  title={Multilingual E5 Text Embeddings: A Technical Report},
  author={Wang, Liang and Yang, Nan and Huang, Xiaolong and Yang, Linjun and Majumder, Rangan and Wei, Furu},
  journal={arXiv preprint arXiv:2402.05672},
  year={2024}
}
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
17
Safetensors
Model size
0.3B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support