sultanbi/e5-base-kazakh
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-base on a translated Kazakh version of the SNLI dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/multilingual-e5-base
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("sultanbi/e5-base-kazakh")
# Run inference
sentences = [
'query: ะา ะบำฉะนะปะตะบ ะบะธะณะตะฝ ะฐาาาฑะฑะฐ ำะนะตะป ะณาฏะปะดั ะฐาะฐััะฐ ะฐา าาฑััั าฑััะฐะฟ ะพััั.',
'query: ะะฐะปะฐะปะฐั ะบาฏะปัะผัััะตะฟ, ะบะฐะผะตัะฐาะฐ าะพะป ะฑาฑะปาะฐะฟ ัาฑั.',
'query: าฎั ะฑะฐะปะฐ ะบำฉะป ะถะฐาะฐััะฝะดะฐ ัาฑั.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Evaluation and comparison against multilingual-e5-base in kazakh tasks
| Task / Dataset | Metric | multilingual-e5-base | e5-base-kazakh | ฮ (absolute) | Description |
|---|---|---|---|---|---|
| Kazakh SNLI (validation set) retrieval | R@1 | 0.433 | 0.887 | +0.454 | Monolingual semantic retrieval on translated SNLI (validation set) |
| R@5 | 0.619 | 0.984 | +0.365 | ||
| R@10 | 0.710 | 0.994 | +0.284 | ||
| STS-B (val, Kazakh) | Pearson | 0.708 | 0.817 | +0.109 | Semantic similarity correlation (machine-translated STS-B) |
| Spearman | 0.721 | 0.825 | +0.104 | ||
| Triplet Accuracy | โ | 0.802 | 0.941 | +0.139 | Monolingual entailment discrimination |
Framework Versions
- Python: 3.11.13
- Sentence Transformers: 4.1.0
- Transformers: 4.52.4
- PyTorch: 2.6.0+cu124
- Accelerate: 1.8.1
- Datasets: 3.6.0
- Tokenizers: 0.21.2
Citation
BibTeX
@article{wang2024multilingual,
title={Multilingual E5 Text Embeddings: A Technical Report},
author={Wang, Liang and Yang, Nan and Huang, Xiaolong and Yang, Linjun and Majumder, Rangan and Wei, Furu},
journal={arXiv preprint arXiv:2402.05672},
year={2024}
}
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 17