YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
English to Telugu Translation Model
This is a character-level Transformer model trained for English โ Telugu translation.
Model Details
- Architecture: Custom Transformer
- Vocabulary: Character-level
- Framework: PyTorch
- Trained On: Parallel English-Telugu sentence pairs
Configuration
See config.json for detailed model architecture and vocabulary sizes.
Inference Code
import torch
import json
from model import Transformer # make sure you have this definition
# Load config
with open("config.json", "r", encoding="utf-8") as f:
config = json.load(f)
# Load vocab
with open("english_vocabulary.json", "r", encoding="utf-8") as f:
en_vocab = json.load(f)
with open("telugu_vocabulary.json", "r", encoding="utf-8") as f:
te_vocab = json.load(f)
# Reverse vocab for decoding
idx2telugu = {i: ch for i, ch in enumerate(te_vocab)}
telugu2idx = {ch: i for i, ch in enumerate(te_vocab)}
# Load model
model = Transformer(
config["d_model"],
config["ffn_hidden"],
config["num_heads"],
config["drop_prob"],
config["num_layers"],
len(en_vocab),
len(te_vocab),
config["max_sequence_length"]
)
model.load_state_dict(torch.load("pytorch_model.bin", map_location="cpu"))
model.eval()
# Translate a sentence
def translate(sentence):
# Implement encoding โ model inference โ decoding
pass # Replace with your tokenization + inference code
print(translate("i love my country."))
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support