synapti's picture
Retrained with proper id2label mapping
6d86c84 verified
|
raw
history blame
4.56 kB
metadata
library_name: transformers
license: apache-2.0
base_model: answerdotai/ModernBERT-base
tags:
  - generated_from_trainer
model-index:
  - name: nci-technique-classifier-v2
    results: []

nci-technique-classifier-v2

This model is a fine-tuned version of answerdotai/ModernBERT-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0233
  • Micro F1: 0.8017
  • Macro F1: 0.6272
  • Micro Precision: 0.8311
  • Micro Recall: 0.7743

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Micro F1 Macro F1 Micro Precision Micro Recall
No log 0.1634 200 0.0350 0.6311 0.1526 0.7644 0.5373
No log 0.3268 400 0.0305 0.6658 0.1814 0.8020 0.5692
0.0552 0.4902 600 0.0282 0.7023 0.2044 0.8244 0.6117
0.0552 0.6536 800 0.0263 0.7268 0.2181 0.8509 0.6343
0.0273 0.8170 1000 0.0256 0.7497 0.2610 0.8305 0.6832
0.0273 0.9804 1200 0.0249 0.7462 0.2371 0.8740 0.6510
0.0273 1.1438 1400 0.0245 0.7626 0.2862 0.8450 0.6949
0.0231 1.3072 1600 0.0242 0.7583 0.2371 0.8582 0.6793
0.0231 1.4706 1800 0.0238 0.7650 0.3155 0.8457 0.6984
0.0226 1.6340 2000 0.0238 0.7624 0.3074 0.8542 0.6885
0.0226 1.7974 2200 0.0230 0.7626 0.3634 0.8681 0.68
0.0226 1.9608 2400 0.0223 0.7747 0.4246 0.8675 0.6998
0.0214 2.1242 2600 0.0225 0.7731 0.4412 0.8752 0.6924
0.0214 2.2876 2800 0.0221 0.7775 0.4101 0.8733 0.7005
0.0189 2.4510 3000 0.0219 0.7819 0.4757 0.8414 0.7303
0.0189 2.6144 3200 0.0224 0.7796 0.4224 0.8606 0.7126
0.0189 2.7778 3400 0.0217 0.7922 0.5512 0.8389 0.7504
0.0187 2.9412 3600 0.0217 0.7813 0.4680 0.8610 0.7150
0.0187 3.1046 3800 0.0224 0.7912 0.5458 0.8341 0.7526
0.0155 3.2680 4000 0.0231 0.7922 0.5455 0.8475 0.7437
0.0155 3.4314 4200 0.0231 0.7996 0.5843 0.8295 0.7717
0.0155 3.5948 4400 0.0223 0.8004 0.5706 0.8398 0.7646
0.0148 3.7582 4600 0.0228 0.8096 0.6067 0.8527 0.7706
0.0148 3.9216 4800 0.0229 0.8135 0.6228 0.8457 0.7837
0.0126 4.0850 5000 0.0255 0.8095 0.6251 0.8379 0.7830
0.0126 4.2484 5200 0.0267 0.8061 0.6223 0.8325 0.7812
0.0126 4.4118 5400 0.0261 0.8081 0.6338 0.8372 0.7809

Framework versions

  • Transformers 4.57.3
  • Pytorch 2.9.1+cu128
  • Datasets 4.4.1
  • Tokenizers 0.22.1