bert-medium-tiny

Model Description

Fine-tuned BERT model for sentiment classification on SST-2 dataset

Base Model

Usage

from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch

tokenizer = AutoTokenizer.from_pretrained("takedarn/bert-medium-tiny")
model = AutoModelForSequenceClassification.from_pretrained("takedarn/bert-medium-tiny")

text = "This movie is great!"
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)

with torch.no_grad():
    outputs = model(**inputs)
    predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
    predicted_class = torch.argmax(predictions, dim=-1)
    
print(f"Predicted class: {predicted_class.item()}")

Training Details

This model was fine-tuned using the following configuration:

  • Task: text-classification
  • Dataset: sst2
  • Base model: google-bert/bert-base-uncased

Citation

If you use this model, please cite:

@misc{bert_medium_tiny,
  author = {Your Name},
  title = {bert-medium-tiny},
  year = {2025},
  publisher = {Hugging Face},
  url = {https://huggingface.co/takedarn/bert-medium-tiny}
}
Downloads last month
1
Safetensors
Model size
4.39M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for takedarn/bert-medium-tiny

Finetuned
(6052)
this model

Dataset used to train takedarn/bert-medium-tiny