Model card for regnety_040.ra3_in1k
	
A RegNetY-4GF image classification model. Trained on ImageNet-1k by Ross Wightman in timm.
The timm RegNet implementation includes a number of enhancements not present in other implementations, including:
- stochastic depth
- gradient checkpointing
- layer-wise LR decay
- configurable output stride (dilation)
- configurable activation and norm layers
- option for a pre-activation bottleneck block used in RegNetV variant
- only known RegNetZ model definitions with pretrained weights
	
		
	
	
		Model Details
	
	
		
	
	
		Model Usage
	
	
		
	
	
		Image Classification
	
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('regnety_040.ra3_in1k', pretrained=True)
model = model.eval()
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0))  
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
	
	
		Feature Map Extraction
	
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
    'regnety_040.ra3_in1k',
    pretrained=True,
    features_only=True,
)
model = model.eval()
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0))  
for o in output:
    
    
    
    
    
    
    
    print(o.shape)
	
		
	
	
		Image Embeddings
	
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
    'regnety_040.ra3_in1k',
    pretrained=True,
    num_classes=0,  
)
model = model.eval()
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0))  
output = model.forward_features(transforms(img).unsqueeze(0))
output = model.forward_head(output, pre_logits=True)
	
		
	
	
		Model Comparison
	
Explore the dataset and runtime metrics of this model in timm model results.
For the comparison summary below, the ra_in1k, ra3_in1k, ch_in1k, sw_*, and lion_* tagged weights are trained in timm.
	
		
	
	
		Citation
	
@InProceedings{Radosavovic2020,
  title = {Designing Network Design Spaces},
  author = {Ilija Radosavovic and Raj Prateek Kosaraju and Ross Girshick and Kaiming He and Piotr Doll{'a}r},
  booktitle = {CVPR},
  year = {2020}
}
@misc{rw2019timm,
  author = {Ross Wightman},
  title = {PyTorch Image Models},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  doi = {10.5281/zenodo.4414861},
  howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}