Create app.py
#17
by
charanhu
- opened
app.py
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 4 |
+
|
| 5 |
+
tokenizer = AutoTokenizer.from_pretrained("upstage/SOLAR-10.7B-Instruct-v1.0")
|
| 6 |
+
model = AutoModelForCausalLM.from_pretrained("upstage/SOLAR-10.7B-Instruct-v1.0")
|
| 7 |
+
|
| 8 |
+
def generate_response(prompt):
|
| 9 |
+
conversation = [{'role': 'user', 'content': prompt}]
|
| 10 |
+
prompt = tokenizer.apply_chat_template(conversation, tokenizer=False, add_generation_prompt=True)
|
| 11 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 12 |
+
outputs = model.generate(**inputs, use_cache=True, max_length=4096)
|
| 13 |
+
outputs_text = tokenizer.decode(outputs[0])
|
| 14 |
+
return outputs_text
|
| 15 |
+
|
| 16 |
+
iface = gr.Interface(fn=generate_response, inputs="text", outputs="text")
|
| 17 |
+
iface.launch()
|