Object Detection
ultralytics
English
yolov8
machine-learning
deep-learning
huggingface
yolov8x.pt / README.md
varunm2004's picture
Update README.md
d1bd60e verified
metadata
license: mit
datasets:
  - duality-robotics/YOLOv8-Multiclass-Object-Detection-Dataset
  - beethogedeon/Trucks-Detection-Yolov8
language:
  - en
metrics:
  - accuracy
base_model:
  - varunm2004/yolov8x.pt
pipeline_tag: object-detection
tags:
  - object-detection
  - yolov8
  - machine-learning
  - deep-learning
  - huggingface
library_name: ultralytics
inference: true

YOLOv8x Model for Object Detection

This is a YOLOv8x model trained on the duality-robotics/YOLOv8-Multiclass-Object-Detection-Dataset. The model is designed to detect multiple classes in images and videos with high accuracy.

How to Use

You can use this model directly with the Hugging Face Inference API or deploy it to your own infrastructure.

Example with the Hugging Face Inference API

import requests

API_URL = "https://api-inference.huggingface.co/models/varunm2004/yolov8x"
headers = {"Authorization": f"Bearer YOUR_HUGGINGFACE_TOKEN"}

def query(filename):
    with open(filename, "rb") as f:
        data = f.read()
    response = requests.post(API_URL, headers=headers, files={"file": data})
    return response.json()

output = query("example.jpg")
print(output)