snowflake-arctic-embed-m-klej-dyk
This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-m. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Snowflake/snowflake-arctic-embed-m
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("sentence_transformers_model_id")
sentences = [
'Chłopiec z Nariokotome',
'ile wynosiła objętość mózgu chłopca z Nariokotome?',
'gdzie znajduje się czwarty polski cmentarz katyński?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.1851 |
| cosine_accuracy@3 |
0.4808 |
| cosine_accuracy@5 |
0.625 |
| cosine_accuracy@10 |
0.726 |
| cosine_precision@1 |
0.1851 |
| cosine_precision@3 |
0.1603 |
| cosine_precision@5 |
0.125 |
| cosine_precision@10 |
0.0726 |
| cosine_recall@1 |
0.1851 |
| cosine_recall@3 |
0.4808 |
| cosine_recall@5 |
0.625 |
| cosine_recall@10 |
0.726 |
| cosine_ndcg@10 |
0.4479 |
| cosine_mrr@10 |
0.359 |
| cosine_map@100 |
0.3672 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.1755 |
| cosine_accuracy@3 |
0.4712 |
| cosine_accuracy@5 |
0.613 |
| cosine_accuracy@10 |
0.7019 |
| cosine_precision@1 |
0.1755 |
| cosine_precision@3 |
0.1571 |
| cosine_precision@5 |
0.1226 |
| cosine_precision@10 |
0.0702 |
| cosine_recall@1 |
0.1755 |
| cosine_recall@3 |
0.4712 |
| cosine_recall@5 |
0.613 |
| cosine_recall@10 |
0.7019 |
| cosine_ndcg@10 |
0.4334 |
| cosine_mrr@10 |
0.3474 |
| cosine_map@100 |
0.3564 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.1562 |
| cosine_accuracy@3 |
0.4543 |
| cosine_accuracy@5 |
0.5649 |
| cosine_accuracy@10 |
0.6731 |
| cosine_precision@1 |
0.1562 |
| cosine_precision@3 |
0.1514 |
| cosine_precision@5 |
0.113 |
| cosine_precision@10 |
0.0673 |
| cosine_recall@1 |
0.1562 |
| cosine_recall@3 |
0.4543 |
| cosine_recall@5 |
0.5649 |
| cosine_recall@10 |
0.6731 |
| cosine_ndcg@10 |
0.4103 |
| cosine_mrr@10 |
0.3261 |
| cosine_map@100 |
0.3351 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.1635 |
| cosine_accuracy@3 |
0.3918 |
| cosine_accuracy@5 |
0.5072 |
| cosine_accuracy@10 |
0.6058 |
| cosine_precision@1 |
0.1635 |
| cosine_precision@3 |
0.1306 |
| cosine_precision@5 |
0.1014 |
| cosine_precision@10 |
0.0606 |
| cosine_recall@1 |
0.1635 |
| cosine_recall@3 |
0.3918 |
| cosine_recall@5 |
0.5072 |
| cosine_recall@10 |
0.6058 |
| cosine_ndcg@10 |
0.3758 |
| cosine_mrr@10 |
0.3027 |
| cosine_map@100 |
0.3117 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.149 |
| cosine_accuracy@3 |
0.3389 |
| cosine_accuracy@5 |
0.4183 |
| cosine_accuracy@10 |
0.4928 |
| cosine_precision@1 |
0.149 |
| cosine_precision@3 |
0.113 |
| cosine_precision@5 |
0.0837 |
| cosine_precision@10 |
0.0493 |
| cosine_recall@1 |
0.149 |
| cosine_recall@3 |
0.3389 |
| cosine_recall@5 |
0.4183 |
| cosine_recall@10 |
0.4928 |
| cosine_ndcg@10 |
0.3178 |
| cosine_mrr@10 |
0.2621 |
| cosine_map@100 |
0.2704 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 3,738 training samples
- Columns:
positive and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
| type |
string |
string |
| details |
- min: 6 tokens
- mean: 94.61 tokens
- max: 512 tokens
|
- min: 10 tokens
- mean: 30.71 tokens
- max: 76 tokens
|
- Samples:
| positive |
anchor |
Marsz Ochotników (chin. |
kto jest kompozytorem chińskiego hymnu narodowego Marsz Ochotników? |
Wybrane przykłady: Święta Rodzina – Maryja z Dzieciątkiem na ręku, niekiedy obok niej stoi św. Józef Rodzina Marii – przedstawienie w którym pojawia się Święta Rodzina oraz postaci spokrewnione z Marią. Maria w połogu (Maria in puerperio) – leżąca na łożu Maria opiekuje się Dzieciątkiem Maria karmiąca (Maria lactans) – Maria karmiąca swą piersią Dzieciątko Orantka – kobieta modląca się z podniesionymi rękami (częsty motyw ikon wschodnich); Sacra Conversazione – Matka Boska tronująca z Dzieciątkiem, otoczona stojącymi postaciami świętych Pietà – opłakująca Jezusa, trzymając na kolanach jego ciało po śmierci na krzyżu; Hodegetria – ujęcie popiersia Maryi, trzymającej na rękach małego Jezusa, częsty motyw w ikonach Eleusa – formalnie podobne do przedstawienia Hodegetrii lecz Maryja policzkiem przytula się do policzka Jezusa Immaculata – Niepokalane Poczęcie Najświętszej Maryi Panny. |
kto zamiast Maryi trzyma nowonarodzonego Jezusa w scenie Bożego Narodzenia przedstawionej na poliptyku z Marią i Dzieciątkiem Jezus? |
Pomnik Josepha von Eichendorffa w Brzeziu Pomnik Josepha von Eichendorffa – odtworzony w 2006 roku pomnik znanego niemieckiego poety epoki romantyzmu związanego z ziemią raciborską, Josepha von Eichendorffa. |
po ilu latach odtworzono wysadzony w 1945 roku pomnik Josepha von Eichendorffa w Raciborzu-Brzeziu? |
- Loss:
MatryoshkaLoss with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: epoch
per_device_train_batch_size: 16
per_device_eval_batch_size: 16
gradient_accumulation_steps: 16
learning_rate: 2e-05
num_train_epochs: 5
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: True
tf32: True
load_best_model_at_end: True
optim: adamw_torch_fused
batch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: epoch
prediction_loss_only: True
per_device_train_batch_size: 16
per_device_eval_batch_size: 16
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 16
eval_accumulation_steps: None
learning_rate: 2e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 5
max_steps: -1
lr_scheduler_type: cosine
lr_scheduler_kwargs: {}
warmup_ratio: 0.1
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: True
fp16: False
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: True
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: True
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch_fused
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: False
hub_always_push: False
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
dispatch_batches: None
split_batches: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
batch_sampler: no_duplicates
multi_dataset_batch_sampler: proportional
Training Logs
| Epoch |
Step |
Training Loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
| 0.0684 |
1 |
9.3155 |
- |
- |
- |
- |
- |
| 0.1368 |
2 |
9.1788 |
- |
- |
- |
- |
- |
| 0.2051 |
3 |
8.8387 |
- |
- |
- |
- |
- |
| 0.2735 |
4 |
8.2961 |
- |
- |
- |
- |
- |
| 0.3419 |
5 |
8.0242 |
- |
- |
- |
- |
- |
| 0.4103 |
6 |
7.2329 |
- |
- |
- |
- |
- |
| 0.4786 |
7 |
5.4386 |
- |
- |
- |
- |
- |
| 0.5470 |
8 |
6.1186 |
- |
- |
- |
- |
- |
| 0.6154 |
9 |
4.9714 |
- |
- |
- |
- |
- |
| 0.6838 |
10 |
5.1958 |
- |
- |
- |
- |
- |
| 0.7521 |
11 |
5.1135 |
- |
- |
- |
- |
- |
| 0.8205 |
12 |
4.6971 |
- |
- |
- |
- |
- |
| 0.8889 |
13 |
4.5559 |
- |
- |
- |
- |
- |
| 0.9573 |
14 |
3.9357 |
0.2842 |
0.3098 |
0.3191 |
0.2238 |
0.3209 |
| 1.0256 |
15 |
3.7916 |
- |
- |
- |
- |
- |
| 1.0940 |
16 |
3.6393 |
- |
- |
- |
- |
- |
| 1.1624 |
17 |
3.7733 |
- |
- |
- |
- |
- |
| 1.2308 |
18 |
3.6974 |
- |
- |
- |
- |
- |
| 1.2991 |
19 |
3.5964 |
- |
- |
- |
- |
- |
| 1.3675 |
20 |
3.4118 |
- |
- |
- |
- |
- |
| 1.4359 |
21 |
3.2022 |
- |
- |
- |
- |
- |
| 1.5043 |
22 |
2.8133 |
- |
- |
- |
- |
- |
| 1.5726 |
23 |
3.0871 |
- |
- |
- |
- |
- |
| 1.6410 |
24 |
2.9559 |
- |
- |
- |
- |
- |
| 1.7094 |
25 |
2.8192 |
- |
- |
- |
- |
- |
| 1.7778 |
26 |
3.462 |
- |
- |
- |
- |
- |
| 1.8462 |
27 |
3.1435 |
- |
- |
- |
- |
- |
| 1.9145 |
28 |
2.8001 |
- |
- |
- |
- |
- |
| 1.9829 |
29 |
2.5643 |
0.3134 |
0.3359 |
0.3563 |
0.2588 |
0.3671 |
| 2.0513 |
30 |
2.4295 |
- |
- |
- |
- |
- |
| 2.1197 |
31 |
2.3892 |
- |
- |
- |
- |
- |
| 2.1880 |
32 |
2.5228 |
- |
- |
- |
- |
- |
| 2.2564 |
33 |
2.4906 |
- |
- |
- |
- |
- |
| 2.3248 |
34 |
2.5358 |
- |
- |
- |
- |
- |
| 2.3932 |
35 |
2.2806 |
- |
- |
- |
- |
- |
| 2.4615 |
36 |
2.0083 |
- |
- |
- |
- |
- |
| 2.5299 |
37 |
2.5088 |
- |
- |
- |
- |
- |
| 2.5983 |
38 |
2.0628 |
- |
- |
- |
- |
- |
| 2.6667 |
39 |
2.193 |
- |
- |
- |
- |
- |
| 2.7350 |
40 |
2.4783 |
- |
- |
- |
- |
- |
| 2.8034 |
41 |
2.382 |
- |
- |
- |
- |
- |
| 2.8718 |
42 |
2.2017 |
- |
- |
- |
- |
- |
| 2.9402 |
43 |
1.9739 |
0.3111 |
0.3392 |
0.3572 |
0.2657 |
0.3659 |
| 3.0085 |
44 |
2.0332 |
- |
- |
- |
- |
- |
| 3.0769 |
45 |
1.9983 |
- |
- |
- |
- |
- |
| 3.1453 |
46 |
1.8612 |
- |
- |
- |
- |
- |
| 3.2137 |
47 |
1.9897 |
- |
- |
- |
- |
- |
| 3.2821 |
48 |
2.2514 |
- |
- |
- |
- |
- |
| 3.3504 |
49 |
2.0092 |
- |
- |
- |
- |
- |
| 3.4188 |
50 |
1.7399 |
- |
- |
- |
- |
- |
| 3.4872 |
51 |
1.5825 |
- |
- |
- |
- |
- |
| 3.5556 |
52 |
2.1501 |
- |
- |
- |
- |
- |
| 3.6239 |
53 |
1.4505 |
- |
- |
- |
- |
- |
| 3.6923 |
54 |
1.8575 |
- |
- |
- |
- |
- |
| 3.7607 |
55 |
2.3882 |
- |
- |
- |
- |
- |
| 3.8291 |
56 |
2.1119 |
- |
- |
- |
- |
- |
| 3.8974 |
57 |
1.8992 |
- |
- |
- |
- |
- |
| 3.9658 |
58 |
1.8323 |
0.3117 |
0.3365 |
0.3558 |
0.2683 |
0.3670 |
| 4.0342 |
59 |
1.5938 |
- |
- |
- |
- |
- |
| 4.1026 |
60 |
1.552 |
- |
- |
- |
- |
- |
| 4.1709 |
61 |
1.907 |
- |
- |
- |
- |
- |
| 4.2393 |
62 |
1.8304 |
- |
- |
- |
- |
- |
| 4.3077 |
63 |
1.8775 |
- |
- |
- |
- |
- |
| 4.3761 |
64 |
1.8654 |
- |
- |
- |
- |
- |
| 4.4444 |
65 |
1.7944 |
- |
- |
- |
- |
- |
| 4.5128 |
66 |
1.8335 |
- |
- |
- |
- |
- |
| 4.5812 |
67 |
1.8823 |
- |
- |
- |
- |
- |
| 4.6496 |
68 |
1.6479 |
- |
- |
- |
- |
- |
| 4.7179 |
69 |
1.5771 |
- |
- |
- |
- |
- |
| 4.7863 |
70 |
2.1911 |
0.3117 |
0.3351 |
0.3564 |
0.2704 |
0.3672 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.12.2
- Sentence Transformers: 3.0.0
- Transformers: 4.41.2
- PyTorch: 2.3.1
- Accelerate: 0.27.2
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}