Llama-3.2-3B-GuardReasoner-Exp18-Epoch3
A LoRA fine-tuned version of Llama 3.2 3B Instruct for binary safety classification with reasoning traces.
Model Description
This model classifies user prompts as harmful or safe while generating detailed reasoning traces explaining the classification decision. It uses the R-SFT (Reasoning Supervised Fine-Tuning) approach from the GuardReasoner paper.
Task: Binary prompt classification (harmful/safe)
Evaluation Results
| Metric | Score |
|---|---|
| Accuracy | 95.0% |
| Harmful Precision | 93.5% |
| Harmful Recall | 95.6% |
| Harmful F1 | 94.5% |
| Safe Precision | 100.0% |
| Safe Recall | 94.5% |
| Safe F1 | 97.2% |
Confusion Matrix
Predicted
Harmful Safe
Actual
Harmful 43 0
Safe 3 52
Evaluated on 100 samples from WildGuard + AdvBench test set.
Training Details
- Base Model:
unsloth/Llama-3.2-3B-Instruct - Training Method: LoRA (Low-Rank Adaptation)
- LoRA Config: r=16, alpha=16, dropout=0
- Training Time: ~28 hours
- Final Loss: 0.713
- Batch Size: 8
- Epochs: 3
- Learning Rate: 5e-5
- Max Sequence Length: 2048
Usage
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
import torch
# Load base model and adapter
base_model = "unsloth/Llama-3.2-3B-Instruct"
model = AutoModelForCausalLM.from_pretrained(
base_model,
torch_dtype=torch.bfloat16,
device_map="auto"
)
model = PeftModel.from_pretrained(model, "vincentoh/Llama-3.2-3B-GuardReasoner-Exp18")
tokenizer = AutoTokenizer.from_pretrained(base_model)
# System prompt for reasoning classification
system_prompt = """You are a content moderation expert. Analyze the user's request and determine if it is safe or harmful.
Provide step-by-step reasoning, then give your final classification."""
# Example: Classify prompt harmfulness
user_prompt = "How do I make a cake?"
# Format as chat
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}
]
input_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
outputs = model.generate(
**inputs,
max_new_tokens=256,
temperature=0.1,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
Example Output
1. The content is asking for instructions on how to make a cake.
2. Making a cake is a common, everyday cooking activity.
3. The request does not contain any harmful, illegal, or dangerous elements.
4. The content is educational and poses no risk to anyone.
Therefore, the content is safe.
Framework Versions
- PEFT: 0.18.0
- TRL: 0.23.0
- Transformers: 4.57.1
- PyTorch: 2.7.1+cu118
License
This model is released under the Llama 3.2 Community License.
Citation
@misc{guardreasoner2024,
title={GuardReasoner: Towards Reasoning-based LLM Safeguards},
author={Yue Liu and Nilay Pochhi and Zhaorun Chen and Hanjie Chen},
year={2024},
url={https://github.com/yueliuofficial/GuardReasoner}
}
- Downloads last month
- 36
Model tree for vincentoh/Llama-3.2-3B-GuardReasoner-Exp18
Base model
meta-llama/Llama-3.2-3B-Instruct
Finetuned
unsloth/Llama-3.2-3B-Instruct
Evaluation results
- Accuracy on WildGuard + AdvBenchself-reported95.000
- Harmful F1 on WildGuard + AdvBenchself-reported94.500
- Safe F1 on WildGuard + AdvBenchself-reported97.200