vish88's picture
update model card README.md
d8bfe91
metadata
license: mit
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - accuracy
model-index:
  - name: xlnet-base-rte-finetuned
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: glue
          type: glue
          args: rte
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.703971119133574

xlnet-base-rte-finetuned

This model is a fine-tuned version of xlnet-base-cased on the glue dataset. It achieves the following results on the evaluation set:

  • Loss: 2.6688
  • Accuracy: 0.7040

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 311 0.9695 0.6859
0.315 2.0 622 2.2516 0.6498
0.315 3.0 933 2.0439 0.7076
0.1096 4.0 1244 2.5190 0.7040
0.0368 5.0 1555 2.6688 0.7040

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.12.0+cu113
  • Datasets 2.3.2
  • Tokenizers 0.12.1