Qwen2.5-32B-Base
This model is a fine-tuned version of Qwen/Qwen2.5-32B on the QA_train_data dataset. It achieves the following results on the evaluation set:
- Loss: 0.9999
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 16
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- total_eval_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3.0
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 0.9373 | 0.1778 | 100 | 0.9672 |
| 0.9671 | 0.3556 | 200 | 0.9639 |
| 0.9584 | 0.5333 | 300 | 0.9629 |
| 0.957 | 0.7111 | 400 | 0.9597 |
| 0.9477 | 0.8889 | 500 | 0.9587 |
| 0.8552 | 1.0667 | 600 | 0.9710 |
| 0.7944 | 1.2444 | 700 | 0.9722 |
| 0.7359 | 1.4222 | 800 | 0.9709 |
| 0.8494 | 1.6 | 900 | 0.9662 |
| 0.8163 | 1.7778 | 1000 | 0.9663 |
| 0.8041 | 1.9556 | 1100 | 0.9639 |
| 0.6291 | 2.1333 | 1200 | 0.9990 |
| 0.6122 | 2.3111 | 1300 | 1.0004 |
| 0.6718 | 2.4889 | 1400 | 1.0003 |
| 0.6712 | 2.6667 | 1500 | 1.0002 |
| 0.6397 | 2.8444 | 1600 | 0.9996 |
Framework versions
- Transformers 4.46.1
- Pytorch 2.5.1+cu124
- Datasets 2.21.0
- Tokenizers 0.20.3
- Downloads last month
- 3
Model tree for w3en2g/qa-Qwen2.5-32B-Base
Base model
Qwen/Qwen2.5-32B