sdxl-fp16 / README.md
wangkanai's picture
Upload folder using huggingface_hub
7bdfceb verified
---
license: openrail++
library_name: diffusers
pipeline_tag: text-to-image
tags:
- sdxl
- text-to-image
- image-generation
---
<!-- README Version: v1.4 -->
# Stable Diffusion XL FP16 Model Repository
Local repository containing Stable Diffusion XL (SDXL) checkpoint models in FP16 precision for high-quality text-to-image generation.
## Model Description
This repository contains two SDXL checkpoint models optimized for different use cases:
- **SDXL Base**: Full-featured SDXL 1.0 base model for high-quality image generation with standard inference steps
- **SDXL Turbo**: Fast inference variant optimized for fewer steps (1-4 steps) while maintaining quality
Both models use FP16 (16-bit floating point) precision, providing a balance between quality and VRAM efficiency.
## Repository Contents
```
E:\huggingface\sdxl-fp16\
β”œβ”€β”€ checkpoints/
β”‚ └── sdxl/
β”‚ β”œβ”€β”€ sdxl-base.safetensors (6.94 GB)
β”‚ └── sdxl-turbo.safetensors (13.88 GB)
β”œβ”€β”€ diffusion_models/
β”‚ └── sdxl/ (empty - reserved)
└── loras/
└── sdxl/ (empty - reserved)
```
**Total Repository Size**: ~20.82 GB
### Model Files
| File | Size | Description |
|------|------|-------------|
| `sdxl-base.safetensors` | 6.94 GB | SDXL 1.0 base checkpoint (FP16) |
| `sdxl-turbo.safetensors` | 13.88 GB | SDXL Turbo checkpoint (FP16) |
## Hardware Requirements
### SDXL Base
- **VRAM**: 8GB minimum, 12GB+ recommended
- **Disk Space**: 7GB for model file
- **System RAM**: 16GB+ recommended
- **GPU**: NVIDIA GPU with CUDA support
### SDXL Turbo
- **VRAM**: 12GB minimum, 16GB+ recommended
- **Disk Space**: 14GB for model file
- **System RAM**: 16GB+ recommended
- **GPU**: NVIDIA GPU with CUDA support
## Usage Examples
### SDXL Base (Standard Quality)
```python
from diffusers import DiffusionPipeline
import torch
# Load SDXL base model from local path
pipe = DiffusionPipeline.from_single_file(
"E:/huggingface/sdxl-fp16/checkpoints/sdxl/sdxl-base.safetensors",
torch_dtype=torch.float16
)
pipe.to("cuda")
# Generate image with standard settings
image = pipe(
prompt="a beautiful mountain landscape at sunset, photorealistic, highly detailed",
negative_prompt="blurry, low quality, distorted",
num_inference_steps=50,
guidance_scale=7.5,
width=1024,
height=1024
).images[0]
image.save("output.png")
```
### SDXL Turbo (Fast Generation)
```python
from diffusers import DiffusionPipeline
import torch
# Load SDXL Turbo for fast inference
pipe = DiffusionPipeline.from_single_file(
"E:/huggingface/sdxl-fp16/checkpoints/sdxl/sdxl-turbo.safetensors",
torch_dtype=torch.float16
)
pipe.to("cuda")
# Generate with minimal steps (1-4 steps)
image = pipe(
prompt="a futuristic cityscape at night, neon lights, cyberpunk",
num_inference_steps=4, # Turbo optimized for 1-4 steps
guidance_scale=0.0, # Turbo works best with guidance_scale=0
width=1024,
height=1024
).images[0]
image.save("turbo_output.png")
```
### Memory Optimization
```python
import torch
from diffusers import DiffusionPipeline
# Enable memory-efficient attention
pipe = DiffusionPipeline.from_single_file(
"E:/huggingface/sdxl-fp16/checkpoints/sdxl/sdxl-base.safetensors",
torch_dtype=torch.float16
)
# Apply optimizations
pipe.enable_attention_slicing()
pipe.enable_vae_slicing()
pipe.to("cuda")
# Generate with optimized memory usage
image = pipe(
prompt="your prompt here",
num_inference_steps=30
).images[0]
```
## Model Specifications
### SDXL Base
- **Architecture**: Latent Diffusion Model with UNet
- **Parameters**: ~2.6B (UNet backbone)
- **Precision**: FP16 (16-bit floating point)
- **Format**: SafeTensors (secure, efficient)
- **Resolution**: 1024x1024 native, supports 512-2048px
- **Text Encoders**: Dual CLIP (OpenCLIP ViT-bigG, OpenAI CLIP ViT-L)
- **Inference Steps**: 30-50 recommended
### SDXL Turbo
- **Architecture**: Adversarial Diffusion Distillation (ADD)
- **Parameters**: Similar to base with distillation optimizations
- **Precision**: FP16 (16-bit floating point)
- **Format**: SafeTensors
- **Resolution**: 1024x1024 native
- **Inference Steps**: 1-4 steps (optimized)
- **Guidance Scale**: 0.0 recommended (classifier-free guidance disabled)
## Performance Tips
### Speed Optimization
- **SDXL Turbo**: Use 1-4 steps with `guidance_scale=0.0` for fastest generation
- **Attention Slicing**: Enable with `pipe.enable_attention_slicing()` for memory efficiency
- **VAE Slicing**: Enable with `pipe.enable_vae_slicing()` to reduce VRAM usage
- **Lower Resolutions**: Use 768x768 or 512x512 for faster generation
- **Batch Processing**: Process multiple prompts together when VRAM allows
### Quality Optimization
- **SDXL Base**: Use 40-50 steps for highest quality
- **Guidance Scale**: 7.0-9.0 for base model (higher = more prompt adherence)
- **Negative Prompts**: Use detailed negative prompts to avoid unwanted elements
- **Resolution**: 1024x1024 is the native resolution for best results
- **Aspect Ratios**: Multiples of 64 recommended (1024x768, 768x1024, etc.)
### VRAM Management
- **8GB VRAM**: Use attention slicing, VAE slicing, lower batch sizes
- **12GB VRAM**: Standard settings with optimizations
- **16GB+ VRAM**: Can handle higher resolutions and batch sizes
## Changelog
### v1.4 (2025-10-28)
- Final verification of repository structure and model integrity
- Confirmed all file sizes and paths are accurate
- Validated YAML frontmatter format and HuggingFace compliance
- Documentation verified complete and production-ready
### v1.3 (2025-10-28)
- Verified repository structure and model file integrity
- Confirmed YAML frontmatter compliance with HuggingFace standards
- Validated all file paths and sizes
- Updated documentation timestamp
### v1.2 (2025-10-14)
- Fixed YAML frontmatter: removed base_model fields (these are base models, not derived)
- Streamlined tags to essential categories only
- Improved metadata compliance with Hugging Face standards
### v1.1 (2025-10-14)
- Updated YAML frontmatter format (metadata now precedes version header)
- Optimized tag ordering for better discoverability
- Verified all model files and sizes
### v1.0 (2025-10-13)
- Initial repository documentation
- Added SDXL Base checkpoint (6.94 GB)
- Added SDXL Turbo checkpoint (13.88 GB)
- Organized directory structure for checkpoints, diffusion models, and LoRAs
## License
**License**: CreativeML Open RAIL++-M License
Stable Diffusion XL models are released under the [CreativeML Open RAIL++-M license](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/LICENSE.md), which permits commercial use with the following key terms:
- βœ… Commercial use permitted
- βœ… Modification and redistribution allowed
- ⚠️ Use restrictions apply (see full license)
- ⚠️ Must include license and attribution
**Key Restrictions**: Cannot be used for illegal activities, generating harmful content, or violating privacy rights. See full license for complete terms.
## Citation
If you use these models in your research or applications, please cite:
```bibtex
@misc{podell2023sdxl,
title={SDXL: Improving Latent Diffusion Models for High-Resolution Image Synthesis},
author={Dustin Podell and Zion English and Kyle Lacey and Andreas Blattmann and Tim Dockhorn and Jonas MΓΌller and Joe Penna and Robin Rombach},
year={2023},
eprint={2307.01952},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
@inproceedings{sauer2023adversarial,
title={Adversarial Diffusion Distillation},
author={Sauer, Axel and Lorenz, Dominik and Blattmann, Andreas and Rombach, Robin},
booktitle={arXiv preprint arXiv:2311.17042},
year={2023}
}
```
## Official Resources
- [SDXL Base Model](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
- [SDXL Turbo Model](https://huggingface.co/stabilityai/sdxl-turbo)
- [SDXL Documentation](https://huggingface.co/docs/diffusers/using-diffusers/sdxl)
- [Diffusers Library](https://github.com/huggingface/diffusers)
- [SDXL Paper](https://arxiv.org/abs/2307.01952)
- [SDXL Turbo Paper](https://arxiv.org/abs/2311.17042)
## Contact & Support
- **Issues**: Report issues with models or documentation on [Hugging Face Discussions](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/discussions)
- **Community**: Join [Hugging Face Discord](https://discord.gg/hugging-face) for community support
- **Repository**: This is a local storage repository - for upstream issues, see official model pages
---
**Repository maintained locally** | Last updated: 2025-10-28 | Version: v1.4