WAN LoRA Collection v2.2 - Image-to-Video (I2V) Adapters (FP8)
A curated collection of specialized LoRA adapters for the WAN (Wangfuyun Animate) video generation model, focusing on camera control, lighting effects, and action animation for image-to-video (I2V) generation.
Model Description
This repository contains 6 specialized LoRA adapters designed to enhance WAN video generation capabilities for image-to-video workflows:
- Camera Control LoRAs: 4 models for precise camera movement control (arc shots, drone perspective, earth zoom-out, rotation)
- Lighting LoRAs: 1 model for cinematic lens flare effects
- Action LoRAs: 1 model for facial animation control (wink action)
These LoRAs are optimized for FP8 precision models and provide fine-grained control over video generation parameters while maintaining high quality and performance.
Repository Contents
wan22-fp8-i2v-loras/
βββ loras/
βββ wan/
βββ wan22-action-wink-i2v-v1-low.safetensors (147 MB)
βββ wan22-camera-arcshot-rank16-i2v-a14b-high.safetensors (293 MB)
βββ wan22-camera-drone-rank16-i2v-a14b.safetensors (293 MB)
βββ wan22-camera-earthzoomout.safetensors (293 MB)
βββ wan22-camera-rotation-rank16-i2v-a14b.safetensors (293 MB)
βββ wan22-light-cinematicflare-i2v-low.safetensors (293 MB)
Total Repository Size: 1.6 GB
LoRA Descriptions
Camera Control LoRAs:
wan22-camera-arcshot-rank16-i2v-a14b-high: High-quality arc shot movements with curved camera paths (rank-16, optimized for 14B models)wan22-camera-drone-rank16-i2v-a14b: Aerial drone-style perspective shots with smooth movement (rank-16)wan22-camera-earthzoomout: Dramatic earth zoom-out effect for cinematic establishing shotswan22-camera-rotation-rank16-i2v-a14b: Circular rotation around subject with stable framing (rank-16)
Lighting LoRAs:
wan22-light-cinematicflare-i2v-low: Cinematic lens flare effects for I2V (low-noise variant, optimized for subtle lighting enhancement)
Action LoRAs:
wan22-action-wink-i2v-v1-low: Wink facial animation for I2V with low-noise optimization (147 MB, half-size for efficient loading)
Hardware Requirements
Minimum Requirements
- VRAM: 12 GB (for FP8 base WAN model + 1-2 LoRAs)
- System RAM: 16 GB
- Disk Space: 1.6 GB (for LoRA collection)
- GPU: NVIDIA RTX 3060 12GB / 4060 Ti 16GB or equivalent
Recommended Requirements
- VRAM: 16-24 GB (RTX 4080, 4090, A5000, or better)
- System RAM: 32 GB
- Disk Space: 50+ GB (including base WAN models and video outputs)
- GPU: NVIDIA RTX 4090, A6000, or higher
Note: Each LoRA adds approximately 150-300 MB to VRAM usage. FP8 base models typically require 6-10 GB VRAM.
Usage Examples
Loading with Diffusers (Python)
from diffusers import DiffusionPipeline
import torch
from PIL import Image
# Load base WAN model with FP8 precision
pipe = DiffusionPipeline.from_pretrained(
"wangfuyun/AnimateLCM-SVD-xt",
torch_dtype=torch.float8_e4m3fn,
variant="fp8"
)
pipe.to("cuda")
# Load camera arc shot LoRA
pipe.load_lora_weights(
r"E:\huggingface\wan22-fp8-i2v-loras\loras\wan",
weight_name="wan22-camera-arcshot-rank16-i2v-a14b-high.safetensors",
adapter_name="camera_arcshot"
)
# Set LoRA strength (0.0-1.0, recommended: 0.6-0.8)
pipe.set_adapters(["camera_arcshot"], adapter_weights=[0.75])
# Load source image
image = Image.open("portrait.jpg").resize((512, 512))
# Generate I2V video with arc shot camera movement
video = pipe(
prompt="Cinematic arc shot around person, dramatic lighting",
image=image,
num_frames=24,
guidance_scale=7.5,
num_inference_steps=25
).frames
# Save video
from diffusers.utils import export_to_video
export_to_video(video, "output_arcshot.mp4", fps=8)
Combining Multiple LoRAs for Cinematic Effect
# Load camera rotation LoRA
pipe.load_lora_weights(
r"E:\huggingface\wan22-fp8-i2v-loras\loras\wan",
weight_name="wan22-camera-rotation-rank16-i2v-a14b.safetensors",
adapter_name="camera_rotation"
)
# Load cinematic lens flare LoRA
pipe.load_lora_weights(
r"E:\huggingface\wan22-fp8-i2v-loras\loras\wan",
weight_name="wan22-light-cinematicflare-i2v-low.safetensors",
adapter_name="lens_flare"
)
# Set multiple adapters with individual weights
pipe.set_adapters(
["camera_rotation", "lens_flare"],
adapter_weights=[0.7, 0.5]
)
# Load scene image
image = Image.open("landscape.jpg")
# Generate video with rotation + lens flare
video = pipe(
prompt="Rotating camera view with golden hour lens flare, cinematic atmosphere",
image=image,
num_frames=32,
guidance_scale=8.0,
num_inference_steps=30
).frames
export_to_video(video, "cinematic_rotation.mp4", fps=12)
Facial Animation with Wink Action
# Load wink action LoRA
pipe.load_lora_weights(
r"E:\huggingface\wan22-fp8-i2v-loras\loras\wan",
weight_name="wan22-action-wink-i2v-v1-low.safetensors",
adapter_name="wink_action"
)
pipe.set_adapters(["wink_action"], adapter_weights=[0.85])
# Load portrait image
image = Image.open("portrait_closeup.jpg")
# Generate wink animation
video = pipe(
prompt="Person winking naturally with subtle facial movement",
image=image,
num_frames=16,
guidance_scale=7.0,
num_inference_steps=20
).frames
export_to_video(video, "wink_animation.mp4", fps=8)
Aerial Drone Shot with Earth Zoom-Out
# Load earth zoom-out LoRA for dramatic establishing shot
pipe.load_lora_weights(
r"E:\huggingface\wan22-fp8-i2v-loras\loras\wan",
weight_name="wan22-camera-earthzoomout.safetensors",
adapter_name="earth_zoom"
)
# Or use drone camera LoRA for aerial perspective
pipe.load_lora_weights(
r"E:\huggingface\wan22-fp8-i2v-loras\loras\wan",
weight_name="wan22-camera-drone-rank16-i2v-a14b.safetensors",
adapter_name="drone_camera"
)
pipe.set_adapters(["drone_camera"], adapter_weights=[0.8])
# Load aerial or landscape image
image = Image.open("city_skyline.jpg")
# Generate dramatic aerial movement
video = pipe(
prompt="Smooth drone camera pullback revealing vast landscape, cinematic movement",
image=image,
num_frames=48,
guidance_scale=8.5,
num_inference_steps=30
).frames
export_to_video(video, "aerial_drone.mp4", fps=12)
Model Specifications
Technical Details
- Format: SafeTensors (secure, memory-efficient binary format)
- Precision: FP8-compatible (optimized for FP8 base models)
- Architecture: LoRA (Low-Rank Adaptation) adapters
- Rank: Rank-16 for most models (efficient parameter count)
- Compatibility: WAN/AnimateLCM-SVD-xt FP8 base models
- Model Variants: I2V-optimized (image-to-video conditioning)
LoRA Strength Guidelines
- Camera Control LoRAs: Recommended strength 0.6-0.8 (higher for stronger camera movement)
- Lighting LoRAs: Recommended strength 0.4-0.6 (lower for subtle effects)
- Action LoRAs: Recommended strength 0.7-0.9 (higher for clear facial animation)
Combination Guidelines
- Camera + Lighting: Safe to combine (reduce camera to 0.6-0.7, lighting to 0.4-0.5)
- Multiple Camera LoRAs: Not recommended (conflicting motion vectors)
- Action + Camera: Can combine for animated portraits with camera movement
- Earth Zoom + Lighting: Excellent for dramatic establishing shots
Performance Tips
- LoRA Selection: Use 1-2 LoRAs maximum per generation to avoid conflicts
- Strength Tuning: Start at recommended strength and adjust Β±0.1 based on desired intensity
- Camera Movement: Use one camera LoRA at a time for consistent, smooth motion
- Lighting Effects: Keep lighting LoRA strength lower (0.4-0.5) for natural-looking enhancement
- Action Animation: Use action LoRAs with close-up portrait images for best results
- FP8 Optimization: These LoRAs are specifically tuned for FP8 inference (2x faster than FP16)
- Frame Count: Use 16-24 frames for action animations, 24-48 frames for camera movements
- Guidance Scale: Use 7.0-8.5 for I2V (higher values increase prompt adherence)
Optimization Recommendations
# Enable memory-efficient attention
pipe.enable_attention_slicing()
pipe.enable_vae_slicing()
# Use FP16 for intermediate calculations (FP8 for weights)
pipe.unet.to(dtype=torch.float16)
pipe.vae.to(dtype=torch.float16)
# Enable xformers for faster attention (requires xformers package)
try:
pipe.enable_xformers_memory_efficient_attention()
except:
print("xformers not available, using default attention")
# Reduce VRAM usage for longer videos
pipe.enable_sequential_cpu_offload() # For <12GB VRAM systems
Troubleshooting
Issue: Camera movement too strong or jittery
- Solution: Reduce LoRA strength to 0.5-0.6, increase num_inference_steps to 30-35
Issue: Lighting effects too subtle or invisible
- Solution: Increase LoRA strength to 0.6-0.7, use prompts with specific lighting keywords
Issue: Action animation not visible or too exaggerated
- Solution: Adjust strength (0.7-0.9 range), ensure image is close-up portrait, use clear action prompt
Issue: Out of memory errors
- Solution: Enable CPU offloading, reduce num_frames, use only one LoRA at a time
License
This LoRA collection follows the WAN (Wangfuyun Animate) license terms. Please refer to the base model license at: https://huggingface.co/wangfuyun/AnimateLCM-SVD-xt
Usage Restrictions:
- Free for research and non-commercial use
- Commercial use may require permission from original authors
- Derivative works should credit the original WAN model and LoRA creators
- Do not use for generating harmful, illegal, or unethical content
- Respect privacy rights when using facial animation features
Citation
If you use these LoRAs in your research or projects, please cite:
@misc{wan22-i2v-lora-collection,
title={WAN LoRA Collection v2.2: Image-to-Video Camera Control and Enhancement},
author={Wangfuyun AnimateLCM Team},
year={2024},
howpublished={\url{https://huggingface.co/wangfuyun/AnimateLCM-SVD-xt}},
note={LoRA adapters for I2V camera control, lighting, and action animation}
}
Resources
- Base Model: wangfuyun/AnimateLCM-SVD-xt
- Diffusers Documentation: https://huggingface.co/docs/diffusers
- LoRA Training Guide: https://huggingface.co/docs/diffusers/training/lora
- WAN Community: Hugging Face Discussions
- FP8 Inference Guide: https://huggingface.co/docs/diffusers/optimization/fp8
Changelog
Version 1.4 (2025-10-28)
- Verified and corrected temporal references in changelog
- Confirmed all metadata fields comply with HuggingFace standards
- Validated YAML frontmatter format and positioning
- Updated README version header to v1.4
Version 1.3 (2024-10-14)
- Updated README to reflect actual repository contents (6 LoRAs, 1.6 GB total)
- Corrected file inventory and sizes based on directory analysis
- Focused documentation on I2V (image-to-video) workflow
- Added comprehensive usage examples for all 6 LoRA adapters
- Enhanced troubleshooting section with common issues and solutions
- Verified YAML frontmatter compliance with HuggingFace standards
- Removed references to non-existent LoRAs (face-naturalizer, upscale, volumetric light, etc.)
- Updated hardware requirements to reflect actual FP8 model sizes
Version 1.2 (2024-10-14)
- Verified YAML metadata compliance with HuggingFace standards
- Confirmed base_model fields for LoRA adapters
Version 1.1 (2024-10-14)
- Fixed YAML frontmatter position (moved to line 1)
- Updated version header placement
Version 1.0 (2024-10-13)
- Initial comprehensive README with Hugging Face metadata
Model Version: v2.2 README Version: v1.4 Last Updated: 2025-10-28 Repository Size: 1.6 GB LoRA Count: 6 specialized I2V adapters
- Downloads last month
- -