WAN LoRA Collection v2.2 - Image-to-Video (I2V) Adapters (FP8)

A curated collection of specialized LoRA adapters for the WAN (Wangfuyun Animate) video generation model, focusing on camera control, lighting effects, and action animation for image-to-video (I2V) generation.

Model Description

This repository contains 6 specialized LoRA adapters designed to enhance WAN video generation capabilities for image-to-video workflows:

  • Camera Control LoRAs: 4 models for precise camera movement control (arc shots, drone perspective, earth zoom-out, rotation)
  • Lighting LoRAs: 1 model for cinematic lens flare effects
  • Action LoRAs: 1 model for facial animation control (wink action)

These LoRAs are optimized for FP8 precision models and provide fine-grained control over video generation parameters while maintaining high quality and performance.

Repository Contents

wan22-fp8-i2v-loras/
└── loras/
    └── wan/
        β”œβ”€β”€ wan22-action-wink-i2v-v1-low.safetensors                     (147 MB)
        β”œβ”€β”€ wan22-camera-arcshot-rank16-i2v-a14b-high.safetensors       (293 MB)
        β”œβ”€β”€ wan22-camera-drone-rank16-i2v-a14b.safetensors              (293 MB)
        β”œβ”€β”€ wan22-camera-earthzoomout.safetensors                       (293 MB)
        β”œβ”€β”€ wan22-camera-rotation-rank16-i2v-a14b.safetensors           (293 MB)
        └── wan22-light-cinematicflare-i2v-low.safetensors              (293 MB)

Total Repository Size: 1.6 GB

LoRA Descriptions

Camera Control LoRAs:

  • wan22-camera-arcshot-rank16-i2v-a14b-high: High-quality arc shot movements with curved camera paths (rank-16, optimized for 14B models)
  • wan22-camera-drone-rank16-i2v-a14b: Aerial drone-style perspective shots with smooth movement (rank-16)
  • wan22-camera-earthzoomout: Dramatic earth zoom-out effect for cinematic establishing shots
  • wan22-camera-rotation-rank16-i2v-a14b: Circular rotation around subject with stable framing (rank-16)

Lighting LoRAs:

  • wan22-light-cinematicflare-i2v-low: Cinematic lens flare effects for I2V (low-noise variant, optimized for subtle lighting enhancement)

Action LoRAs:

  • wan22-action-wink-i2v-v1-low: Wink facial animation for I2V with low-noise optimization (147 MB, half-size for efficient loading)

Hardware Requirements

Minimum Requirements

  • VRAM: 12 GB (for FP8 base WAN model + 1-2 LoRAs)
  • System RAM: 16 GB
  • Disk Space: 1.6 GB (for LoRA collection)
  • GPU: NVIDIA RTX 3060 12GB / 4060 Ti 16GB or equivalent

Recommended Requirements

  • VRAM: 16-24 GB (RTX 4080, 4090, A5000, or better)
  • System RAM: 32 GB
  • Disk Space: 50+ GB (including base WAN models and video outputs)
  • GPU: NVIDIA RTX 4090, A6000, or higher

Note: Each LoRA adds approximately 150-300 MB to VRAM usage. FP8 base models typically require 6-10 GB VRAM.

Usage Examples

Loading with Diffusers (Python)

from diffusers import DiffusionPipeline
import torch
from PIL import Image

# Load base WAN model with FP8 precision
pipe = DiffusionPipeline.from_pretrained(
    "wangfuyun/AnimateLCM-SVD-xt",
    torch_dtype=torch.float8_e4m3fn,
    variant="fp8"
)
pipe.to("cuda")

# Load camera arc shot LoRA
pipe.load_lora_weights(
    r"E:\huggingface\wan22-fp8-i2v-loras\loras\wan",
    weight_name="wan22-camera-arcshot-rank16-i2v-a14b-high.safetensors",
    adapter_name="camera_arcshot"
)

# Set LoRA strength (0.0-1.0, recommended: 0.6-0.8)
pipe.set_adapters(["camera_arcshot"], adapter_weights=[0.75])

# Load source image
image = Image.open("portrait.jpg").resize((512, 512))

# Generate I2V video with arc shot camera movement
video = pipe(
    prompt="Cinematic arc shot around person, dramatic lighting",
    image=image,
    num_frames=24,
    guidance_scale=7.5,
    num_inference_steps=25
).frames

# Save video
from diffusers.utils import export_to_video
export_to_video(video, "output_arcshot.mp4", fps=8)

Combining Multiple LoRAs for Cinematic Effect

# Load camera rotation LoRA
pipe.load_lora_weights(
    r"E:\huggingface\wan22-fp8-i2v-loras\loras\wan",
    weight_name="wan22-camera-rotation-rank16-i2v-a14b.safetensors",
    adapter_name="camera_rotation"
)

# Load cinematic lens flare LoRA
pipe.load_lora_weights(
    r"E:\huggingface\wan22-fp8-i2v-loras\loras\wan",
    weight_name="wan22-light-cinematicflare-i2v-low.safetensors",
    adapter_name="lens_flare"
)

# Set multiple adapters with individual weights
pipe.set_adapters(
    ["camera_rotation", "lens_flare"],
    adapter_weights=[0.7, 0.5]
)

# Load scene image
image = Image.open("landscape.jpg")

# Generate video with rotation + lens flare
video = pipe(
    prompt="Rotating camera view with golden hour lens flare, cinematic atmosphere",
    image=image,
    num_frames=32,
    guidance_scale=8.0,
    num_inference_steps=30
).frames

export_to_video(video, "cinematic_rotation.mp4", fps=12)

Facial Animation with Wink Action

# Load wink action LoRA
pipe.load_lora_weights(
    r"E:\huggingface\wan22-fp8-i2v-loras\loras\wan",
    weight_name="wan22-action-wink-i2v-v1-low.safetensors",
    adapter_name="wink_action"
)

pipe.set_adapters(["wink_action"], adapter_weights=[0.85])

# Load portrait image
image = Image.open("portrait_closeup.jpg")

# Generate wink animation
video = pipe(
    prompt="Person winking naturally with subtle facial movement",
    image=image,
    num_frames=16,
    guidance_scale=7.0,
    num_inference_steps=20
).frames

export_to_video(video, "wink_animation.mp4", fps=8)

Aerial Drone Shot with Earth Zoom-Out

# Load earth zoom-out LoRA for dramatic establishing shot
pipe.load_lora_weights(
    r"E:\huggingface\wan22-fp8-i2v-loras\loras\wan",
    weight_name="wan22-camera-earthzoomout.safetensors",
    adapter_name="earth_zoom"
)

# Or use drone camera LoRA for aerial perspective
pipe.load_lora_weights(
    r"E:\huggingface\wan22-fp8-i2v-loras\loras\wan",
    weight_name="wan22-camera-drone-rank16-i2v-a14b.safetensors",
    adapter_name="drone_camera"
)

pipe.set_adapters(["drone_camera"], adapter_weights=[0.8])

# Load aerial or landscape image
image = Image.open("city_skyline.jpg")

# Generate dramatic aerial movement
video = pipe(
    prompt="Smooth drone camera pullback revealing vast landscape, cinematic movement",
    image=image,
    num_frames=48,
    guidance_scale=8.5,
    num_inference_steps=30
).frames

export_to_video(video, "aerial_drone.mp4", fps=12)

Model Specifications

Technical Details

  • Format: SafeTensors (secure, memory-efficient binary format)
  • Precision: FP8-compatible (optimized for FP8 base models)
  • Architecture: LoRA (Low-Rank Adaptation) adapters
  • Rank: Rank-16 for most models (efficient parameter count)
  • Compatibility: WAN/AnimateLCM-SVD-xt FP8 base models
  • Model Variants: I2V-optimized (image-to-video conditioning)

LoRA Strength Guidelines

  • Camera Control LoRAs: Recommended strength 0.6-0.8 (higher for stronger camera movement)
  • Lighting LoRAs: Recommended strength 0.4-0.6 (lower for subtle effects)
  • Action LoRAs: Recommended strength 0.7-0.9 (higher for clear facial animation)

Combination Guidelines

  • Camera + Lighting: Safe to combine (reduce camera to 0.6-0.7, lighting to 0.4-0.5)
  • Multiple Camera LoRAs: Not recommended (conflicting motion vectors)
  • Action + Camera: Can combine for animated portraits with camera movement
  • Earth Zoom + Lighting: Excellent for dramatic establishing shots

Performance Tips

  1. LoRA Selection: Use 1-2 LoRAs maximum per generation to avoid conflicts
  2. Strength Tuning: Start at recommended strength and adjust Β±0.1 based on desired intensity
  3. Camera Movement: Use one camera LoRA at a time for consistent, smooth motion
  4. Lighting Effects: Keep lighting LoRA strength lower (0.4-0.5) for natural-looking enhancement
  5. Action Animation: Use action LoRAs with close-up portrait images for best results
  6. FP8 Optimization: These LoRAs are specifically tuned for FP8 inference (2x faster than FP16)
  7. Frame Count: Use 16-24 frames for action animations, 24-48 frames for camera movements
  8. Guidance Scale: Use 7.0-8.5 for I2V (higher values increase prompt adherence)

Optimization Recommendations

# Enable memory-efficient attention
pipe.enable_attention_slicing()
pipe.enable_vae_slicing()

# Use FP16 for intermediate calculations (FP8 for weights)
pipe.unet.to(dtype=torch.float16)
pipe.vae.to(dtype=torch.float16)

# Enable xformers for faster attention (requires xformers package)
try:
    pipe.enable_xformers_memory_efficient_attention()
except:
    print("xformers not available, using default attention")

# Reduce VRAM usage for longer videos
pipe.enable_sequential_cpu_offload()  # For <12GB VRAM systems

Troubleshooting

Issue: Camera movement too strong or jittery

  • Solution: Reduce LoRA strength to 0.5-0.6, increase num_inference_steps to 30-35

Issue: Lighting effects too subtle or invisible

  • Solution: Increase LoRA strength to 0.6-0.7, use prompts with specific lighting keywords

Issue: Action animation not visible or too exaggerated

  • Solution: Adjust strength (0.7-0.9 range), ensure image is close-up portrait, use clear action prompt

Issue: Out of memory errors

  • Solution: Enable CPU offloading, reduce num_frames, use only one LoRA at a time

License

This LoRA collection follows the WAN (Wangfuyun Animate) license terms. Please refer to the base model license at: https://huggingface.co/wangfuyun/AnimateLCM-SVD-xt

Usage Restrictions:

  • Free for research and non-commercial use
  • Commercial use may require permission from original authors
  • Derivative works should credit the original WAN model and LoRA creators
  • Do not use for generating harmful, illegal, or unethical content
  • Respect privacy rights when using facial animation features

Citation

If you use these LoRAs in your research or projects, please cite:

@misc{wan22-i2v-lora-collection,
  title={WAN LoRA Collection v2.2: Image-to-Video Camera Control and Enhancement},
  author={Wangfuyun AnimateLCM Team},
  year={2024},
  howpublished={\url{https://huggingface.co/wangfuyun/AnimateLCM-SVD-xt}},
  note={LoRA adapters for I2V camera control, lighting, and action animation}
}

Resources

Changelog

Version 1.4 (2025-10-28)

  • Verified and corrected temporal references in changelog
  • Confirmed all metadata fields comply with HuggingFace standards
  • Validated YAML frontmatter format and positioning
  • Updated README version header to v1.4

Version 1.3 (2024-10-14)

  • Updated README to reflect actual repository contents (6 LoRAs, 1.6 GB total)
  • Corrected file inventory and sizes based on directory analysis
  • Focused documentation on I2V (image-to-video) workflow
  • Added comprehensive usage examples for all 6 LoRA adapters
  • Enhanced troubleshooting section with common issues and solutions
  • Verified YAML frontmatter compliance with HuggingFace standards
  • Removed references to non-existent LoRAs (face-naturalizer, upscale, volumetric light, etc.)
  • Updated hardware requirements to reflect actual FP8 model sizes

Version 1.2 (2024-10-14)

  • Verified YAML metadata compliance with HuggingFace standards
  • Confirmed base_model fields for LoRA adapters

Version 1.1 (2024-10-14)

  • Fixed YAML frontmatter position (moved to line 1)
  • Updated version header placement

Version 1.0 (2024-10-13)

  • Initial comprehensive README with Hugging Face metadata

Model Version: v2.2 README Version: v1.4 Last Updated: 2025-10-28 Repository Size: 1.6 GB LoRA Count: 6 specialized I2V adapters

Downloads last month
-
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Collection including wangkanai/wan22-fp8-i2v-loras