See axolotl config
axolotl version: 0.10.0.dev0
base_model: Qwen/Qwen3-4B-Base
plugins:
  - axolotl.integrations.liger.LigerPlugin
  - axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
liger_rms_norm: true
liger_glu_activation: true
# torch_compile: true
dataloader_prefetch_factor: 4
dataloader_num_workers: 2
dataloader_pin_memory: true
chat_template: qwen3
datasets:
  - path: winglian/OpenThoughts-114k-math-correct
    type: chat_template
    split: train
    split_thinking: true
    eot_tokens:
      - "<|im_end|>"
dataset_prepared_path: last_run_prepared
val_set_size: 0.01
output_dir: ./outputs/model-out-math-4b
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
wandb_project: kd-4b-math
wandb_entity: axolotl-ai
wandb_name: sft-4b
gradient_accumulation_steps: 1
micro_batch_size: 4
num_epochs: 2
optimizer: adamw_torch_fused
adam_beta2: 0.95
lr_scheduler: rex
learning_rate: 3e-5
max_grad_norm: 0.1
save_safetensors: true
bf16: true
tf32: true
gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
logging_steps: 1
flash_attention: true
warmup_steps: 100
evals_per_epoch: 4
saves_per_epoch: 1
weight_decay: 0.1
special_tokens:
  eos_token: <|im_end|>
deepspeed: deepspeed_configs/zero2_torch_compile.json
outputs/model-out-math-4b
This model is a fine-tuned version of Qwen/Qwen3-4B-Base on the winglian/OpenThoughts-114k-math-correct dataset. It achieves the following results on the evaluation set:
- Loss: 0.3929
 
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
 - train_batch_size: 4
 - eval_batch_size: 4
 - seed: 42
 - distributed_type: multi-GPU
 - num_devices: 8
 - total_train_batch_size: 32
 - total_eval_batch_size: 32
 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.95) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
 - lr_scheduler_type: cosine
 - lr_scheduler_warmup_steps: 100
 - num_epochs: 2.0
 
Training results
| Training Loss | Epoch | Step | Validation Loss | 
|---|---|---|---|
| 0.5644 | 0.0016 | 1 | 0.5801 | 
| 0.4038 | 0.2504 | 159 | 0.4154 | 
| 0.3914 | 0.5008 | 318 | 0.4035 | 
| 0.3812 | 0.7512 | 477 | 0.3960 | 
| 0.3626 | 1.0016 | 636 | 0.3915 | 
| 0.316 | 1.2520 | 795 | 0.3958 | 
| 0.3171 | 1.5024 | 954 | 0.3963 | 
| 0.2944 | 1.7528 | 1113 | 0.3929 | 
Framework versions
- Transformers 4.51.3
 - Pytorch 2.7.0+cu128
 - Datasets 3.5.1
 - Tokenizers 0.21.1
 
- Downloads last month
 - 48