SentenceTransformer based on yahyaabd/allstats-search-mini-v1-1-mnrl
This is a sentence-transformers model finetuned from yahyaabd/allstats-search-mini-v1-1-mnrl on the bps-pub-cosine-pairs dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: yahyaabd/allstats-search-mini-v1-1-mnrl
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("yahyaabd/allstats-search-mini-v1-1-mnrl-v2")
# Run inference
sentences = [
'q-4068',
'Berapa persentase rumah tangga dengan akses sanitasi layak?',
'43a5856225b1ff1cb95e319a',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Datasets:
sts-devandsts-test - Evaluated with
EmbeddingSimilarityEvaluator
| Metric | sts-dev | sts-test |
|---|---|---|
| pearson_cosine | 0.9259 | 0.9299 |
| spearman_cosine | 0.8465 | 0.8497 |
Training Details
Training Dataset
bps-pub-cosine-pairs
- Dataset: bps-pub-cosine-pairs at d58662e
- Size: 8,082 training samples
- Columns:
query_id,query,corpus_id,title, andscore - Approximate statistics based on the first 1000 samples:
query_id query corpus_id title score type string string string string float details - min: 4 tokens
- mean: 5.21 tokens
- max: 6 tokens
- min: 4 tokens
- mean: 11.04 tokens
- max: 30 tokens
- min: 4 tokens
- mean: 17.4 tokens
- max: 23 tokens
- min: 5 tokens
- mean: 13.02 tokens
- max: 43 tokens
- min: 0.1
- mean: 0.55
- max: 0.9
- Samples:
query_id query corpus_id title score q-1599Nilai Tukar Nelayan0b0da8fc2b6af9329a6d9cfeStatistik Hotel dan Akomodasi Lainnya di Indonesia 20130.1q-3595Berapa angka statistik pertambangan non migas Indonesia periode 2012?3c83610c3e2e5242177e2b11Statistik Pertambangan Non Minyak dan Gas Bumi 2011-20150.9q-9112Bagaimana situasi angkatan kerja Indonesia di bulan Februari 2021?b547a5642aeb04d071cb83d4Keadaan Angkatan Kerja di Indonesia Februari 20210.9 - Loss:
CosineSimilarityLosswith these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
bps-pub-cosine-pairs
- Dataset: bps-pub-cosine-pairs at d58662e
- Size: 1,010 evaluation samples
- Columns:
query_id,query,corpus_id,title, andscore - Approximate statistics based on the first 1000 samples:
query_id query corpus_id title score type string string string string float details - min: 4 tokens
- mean: 5.22 tokens
- max: 6 tokens
- min: 4 tokens
- mean: 11.19 tokens
- max: 31 tokens
- min: 7 tokens
- mean: 17.25 tokens
- max: 23 tokens
- min: 5 tokens
- mean: 13.24 tokens
- max: 44 tokens
- min: 0.1
- mean: 0.56
- max: 0.9
- Samples:
query_id query corpus_id title score q-1273Sosek Desember 2021b7890a143bc751d1d84dcf4aLaporan Bulanan Data Sosial Ekonomi Desember 20210.9q-4882Ekspor Indonesia menurut SITC 2019-20209f3d9054c2f29bc478d56cd1Statistik Perdagangan Luar Negeri Indonesia Ekspor Menurut Kode SITC, 2019-20200.9q-7141Pengeluaran konsumsi penduduk Indonesia Maret 20184194e924ca33f087b68ab2dePengeluaran untuk Konsumsi Penduduk Indonesia, Maret 20180.9 - Loss:
CosineSimilarityLosswith these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 32per_device_eval_batch_size: 32learning_rate: 1e-05warmup_ratio: 0.1fp16: Trueload_best_model_at_end: Truelabel_smoothing_factor: 0.01eval_on_start: True
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 32per_device_eval_batch_size: 32per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 1e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 3max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.01optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Trueuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | Validation Loss | sts-dev_spearman_cosine | sts-test_spearman_cosine |
|---|---|---|---|---|---|
| 0 | 0 | - | 0.3773 | 0.8467 | - |
| 0.0395 | 10 | 0.3676 | 0.3628 | 0.8469 | - |
| 0.0791 | 20 | 0.3166 | 0.3161 | 0.8474 | - |
| 0.1186 | 30 | 0.2743 | 0.2423 | 0.8483 | - |
| 0.1581 | 40 | 0.1933 | 0.1625 | 0.8494 | - |
| 0.1976 | 50 | 0.1473 | 0.1154 | 0.8507 | - |
| 0.2372 | 60 | 0.1046 | 0.1020 | 0.8514 | - |
| 0.2767 | 70 | 0.0839 | 0.0878 | 0.8519 | - |
| 0.3162 | 80 | 0.0839 | 0.0759 | 0.8519 | - |
| 0.3557 | 90 | 0.0756 | 0.0667 | 0.8521 | - |
| 0.3953 | 100 | 0.0611 | 0.0597 | 0.8522 | - |
| 0.4348 | 110 | 0.0562 | 0.0554 | 0.8520 | - |
| 0.4743 | 120 | 0.0557 | 0.0518 | 0.8517 | - |
| 0.5138 | 130 | 0.0411 | 0.0482 | 0.8514 | - |
| 0.5534 | 140 | 0.0481 | 0.0454 | 0.8510 | - |
| 0.5929 | 150 | 0.0474 | 0.0423 | 0.8500 | - |
| 0.6324 | 160 | 0.0433 | 0.0404 | 0.8498 | - |
| 0.6719 | 170 | 0.0389 | 0.0390 | 0.8502 | - |
| 0.7115 | 180 | 0.0423 | 0.0373 | 0.8503 | - |
| 0.7510 | 190 | 0.0348 | 0.0360 | 0.8495 | - |
| 0.7905 | 200 | 0.0404 | 0.0346 | 0.8492 | - |
| 0.8300 | 210 | 0.0285 | 0.0334 | 0.8494 | - |
| 0.8696 | 220 | 0.0322 | 0.0317 | 0.8482 | - |
| 0.9091 | 230 | 0.0311 | 0.0305 | 0.8469 | - |
| 0.9486 | 240 | 0.027 | 0.0298 | 0.8462 | - |
| 0.9881 | 250 | 0.03 | 0.0292 | 0.8462 | - |
| 1.0277 | 260 | 0.0245 | 0.0292 | 0.8458 | - |
| 1.0672 | 270 | 0.026 | 0.0290 | 0.8447 | - |
| 1.1067 | 280 | 0.0325 | 0.0279 | 0.8466 | - |
| 1.1462 | 290 | 0.0208 | 0.0274 | 0.8458 | - |
| 1.1858 | 300 | 0.0249 | 0.0271 | 0.8451 | - |
| 1.2253 | 310 | 0.026 | 0.0264 | 0.8444 | - |
| 1.2648 | 320 | 0.0234 | 0.0261 | 0.8469 | - |
| 1.3043 | 330 | 0.024 | 0.0267 | 0.8482 | - |
| 1.3439 | 340 | 0.0212 | 0.0254 | 0.8480 | - |
| 1.3834 | 350 | 0.033 | 0.0247 | 0.8473 | - |
| 1.4229 | 360 | 0.0246 | 0.0244 | 0.8473 | - |
| 1.4625 | 370 | 0.0241 | 0.0242 | 0.8477 | - |
| 1.5020 | 380 | 0.0187 | 0.0237 | 0.8473 | - |
| 1.5415 | 390 | 0.0228 | 0.0235 | 0.8474 | - |
| 1.5810 | 400 | 0.0169 | 0.0234 | 0.8475 | - |
| 1.6206 | 410 | 0.0249 | 0.0233 | 0.8470 | - |
| 1.6601 | 420 | 0.0223 | 0.0234 | 0.8475 | - |
| 1.6996 | 430 | 0.0174 | 0.0232 | 0.8477 | - |
| 1.7391 | 440 | 0.0249 | 0.0229 | 0.8480 | - |
| 1.7787 | 450 | 0.0243 | 0.0229 | 0.8483 | - |
| 1.8182 | 460 | 0.0203 | 0.0232 | 0.8485 | - |
| 1.8577 | 470 | 0.0198 | 0.0226 | 0.8477 | - |
| 1.8972 | 480 | 0.019 | 0.0223 | 0.8464 | - |
| 1.9368 | 490 | 0.0185 | 0.0218 | 0.8465 | - |
| 1.9763 | 500 | 0.0168 | 0.0218 | 0.8468 | - |
| 2.0158 | 510 | 0.019 | 0.0217 | 0.8472 | - |
| 2.0553 | 520 | 0.0194 | 0.0217 | 0.8476 | - |
| 2.0949 | 530 | 0.0192 | 0.0216 | 0.8475 | - |
| 2.1344 | 540 | 0.0175 | 0.0215 | 0.8473 | - |
| 2.1739 | 550 | 0.013 | 0.0214 | 0.8477 | - |
| 2.2134 | 560 | 0.017 | 0.0212 | 0.8478 | - |
| 2.2530 | 570 | 0.0157 | 0.0212 | 0.8478 | - |
| 2.2925 | 580 | 0.0169 | 0.0211 | 0.8473 | - |
| 2.3320 | 590 | 0.0192 | 0.0210 | 0.8475 | - |
| 2.3715 | 600 | 0.0116 | 0.0208 | 0.8472 | - |
| 2.4111 | 610 | 0.0151 | 0.0207 | 0.8473 | - |
| 2.4506 | 620 | 0.0182 | 0.0205 | 0.8472 | - |
| 2.4901 | 630 | 0.0143 | 0.0205 | 0.8471 | - |
| 2.5296 | 640 | 0.0193 | 0.0204 | 0.8470 | - |
| 2.5692 | 650 | 0.0194 | 0.0203 | 0.8469 | - |
| 2.6087 | 660 | 0.0132 | 0.0204 | 0.8469 | - |
| 2.6482 | 670 | 0.0208 | 0.0204 | 0.8464 | - |
| 2.6877 | 680 | 0.0155 | 0.0203 | 0.8461 | - |
| 2.7273 | 690 | 0.0142 | 0.0203 | 0.8461 | - |
| 2.7668 | 700 | 0.0162 | 0.0203 | 0.8460 | - |
| 2.8063 | 710 | 0.0198 | 0.0203 | 0.8461 | - |
| 2.8458 | 720 | 0.0138 | 0.0204 | 0.8465 | - |
| 2.8854 | 730 | 0.0145 | 0.0204 | 0.8465 | - |
| 2.9249 | 740 | 0.0129 | 0.0204 | 0.8466 | - |
| 2.9644 | 750 | 0.0108 | 0.0204 | 0.8465 | - |
| -1 | -1 | - | - | - | 0.8497 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.4.0
- Transformers: 4.48.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 12
Model tree for yahyaabd/allstats-search-mini-v1-1-mnrl-v2
Finetuned
yahyaabd/allstats-search-mini-v1-1-mnrl
Dataset used to train yahyaabd/allstats-search-mini-v1-1-mnrl-v2
Evaluation results
- Pearson Cosine on sts devself-reported0.926
- Spearman Cosine on sts devself-reported0.847
- Pearson Cosine on sts testself-reported0.930
- Spearman Cosine on sts testself-reported0.850