SentenceTransformer based on yahyaabd/allstats-search-mini-v1-1-mnrl
This is a sentence-transformers model finetuned from yahyaabd/allstats-search-mini-v1-1-mnrl on the bps-pub-cosine-pairs dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: yahyaabd/allstats-search-mini-v1-1-mnrl
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("yahyaabd/allstats-search-mini-v2")
# Run inference
sentences = [
'q-786',
'Angka Kematian Bayi oper P#rovinsi',
'f3b02f2b6706e104ea9d5b74',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Datasets:
sts-devandsts-test - Evaluated with
EmbeddingSimilarityEvaluator
| Metric | sts-dev | sts-test |
|---|---|---|
| pearson_cosine | 0.9041 | 0.9069 |
| spearman_cosine | 0.8335 | 0.8381 |
Training Details
Training Dataset
bps-pub-cosine-pairs
- Dataset: bps-pub-cosine-pairs at 038a9de
- Size: 64,260 training samples
- Columns:
query_id,query,corpus_id,title, andscore - Approximate statistics based on the first 1000 samples:
query_id query corpus_id title score type string string string string float details - min: 4 tokens
- mean: 5.18 tokens
- max: 6 tokens
- min: 4 tokens
- mean: 13.33 tokens
- max: 38 tokens
- min: 7 tokens
- mean: 17.38 tokens
- max: 22 tokens
- min: 5 tokens
- mean: 13.13 tokens
- max: 30 tokens
- min: 0.1
- mean: 0.56
- max: 0.9
- Samples:
query_id query corpus_id title score q-1599Nilai Tukar Nelayan0b0da8fc2b6af9329a6d9cfeStatistik Hotel dan Akomodasi Lainnya di Indonesia 20130.1q-1599nilai tukar nelayan0b0da8fc2b6af9329a6d9cfeStatistik Hotel dan Akomodasi Lainnya di Indonesia 20130.1q-1599NILAI TUKAR NELAYAN0b0da8fc2b6af9329a6d9cfeStatistik Hotel dan Akomodasi Lainnya di Indonesia 20130.1 - Loss:
CosineSimilarityLosswith these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
bps-pub-cosine-pairs
- Dataset: bps-pub-cosine-pairs at 038a9de
- Size: 8,067 evaluation samples
- Columns:
query_id,query,corpus_id,title, andscore - Approximate statistics based on the first 1000 samples:
query_id query corpus_id title score type string string string string float details - min: 4 tokens
- mean: 5.2 tokens
- max: 6 tokens
- min: 4 tokens
- mean: 12.77 tokens
- max: 33 tokens
- min: 13 tokens
- mean: 17.25 tokens
- max: 23 tokens
- min: 5 tokens
- mean: 13.37 tokens
- max: 38 tokens
- min: 0.1
- mean: 0.57
- max: 0.9
- Samples:
query_id query corpus_id title score q-1273Sosek Desember 2021b7890a143bc751d1d84dcf4aLaporan Bulanan Data Sosial Ekonomi Desember 20210.9q-1273sosek desember 2021b7890a143bc751d1d84dcf4aLaporan Bulanan Data Sosial Ekonomi Desember 20210.9q-1273SOSEK DESEMBER 2021b7890a143bc751d1d84dcf4aLaporan Bulanan Data Sosial Ekonomi Desember 20210.9 - Loss:
CosineSimilarityLosswith these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 64per_device_eval_batch_size: 64learning_rate: 1e-05num_train_epochs: 2warmup_ratio: 0.1fp16: Trueload_best_model_at_end: Truelabel_smoothing_factor: 0.01eval_on_start: True
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 64per_device_eval_batch_size: 64per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 1e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 2max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.01optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Trueuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | Validation Loss | sts-dev_spearman_cosine | sts-test_spearman_cosine |
|---|---|---|---|---|---|
| 0 | 0 | - | 0.3848 | 0.8288 | - |
| 0.0995 | 100 | 0.236 | 0.0950 | 0.8396 | - |
| 0.1990 | 200 | 0.0655 | 0.0487 | 0.8452 | - |
| 0.2985 | 300 | 0.0407 | 0.0342 | 0.8437 | - |
| 0.3980 | 400 | 0.0309 | 0.0291 | 0.8427 | - |
| 0.4975 | 500 | 0.0247 | 0.0253 | 0.8427 | - |
| 0.5970 | 600 | 0.0211 | 0.0235 | 0.8427 | - |
| 0.6965 | 700 | 0.0198 | 0.0224 | 0.8395 | - |
| 0.7960 | 800 | 0.0168 | 0.0212 | 0.8405 | - |
| 0.8955 | 900 | 0.0166 | 0.0206 | 0.8384 | - |
| 0.9950 | 1000 | 0.0145 | 0.0195 | 0.8388 | - |
| 1.0945 | 1100 | 0.0119 | 0.0193 | 0.8395 | - |
| 1.1940 | 1200 | 0.0113 | 0.0190 | 0.8376 | - |
| 1.2935 | 1300 | 0.0108 | 0.0189 | 0.8330 | - |
| 1.3930 | 1400 | 0.0119 | 0.0180 | 0.8364 | - |
| 1.4925 | 1500 | 0.0105 | 0.0184 | 0.8338 | - |
| 1.5920 | 1600 | 0.0092 | 0.0180 | 0.8355 | - |
| 1.6915 | 1700 | 0.009 | 0.0182 | 0.8319 | - |
| 1.7910 | 1800 | 0.0096 | 0.0178 | 0.8337 | - |
| 1.8905 | 1900 | 0.0099 | 0.0178 | 0.8326 | - |
| 1.99 | 2000 | 0.0094 | 0.0178 | 0.8335 | - |
| -1 | -1 | - | - | - | 0.8381 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.4.0
- Transformers: 4.48.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 2
Model tree for yahyaabd/allstats-search-mini-v2
Finetuned
yahyaabd/allstats-search-mini-v1-1-mnrl
Dataset used to train yahyaabd/allstats-search-mini-v2
Evaluation results
- Pearson Cosine on sts devself-reported0.904
- Spearman Cosine on sts devself-reported0.833
- Pearson Cosine on sts testself-reported0.907
- Spearman Cosine on sts testself-reported0.838