SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 on the query-hard-pos-neg-doc-pairs-statictable dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("yahyaabd/allstats-search-miniLM-v1-3")
# Run inference
sentences = [
'Arus dana Q3 2006',
'Ringkasan Neraca Arus Dana, Triwulan III, 2006, (Miliar Rupiah)',
'Rata-Rata Pengeluaran per Kapita Sebulan di Daerah Perkotaan Menurut Kelompok Barang dan Golongan Pengeluaran per Kapita Sebulan, 2000-2012',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Datasets:
allstats-semantic-mini-v1_testandallstats-semantic-mini-v1_dev - Evaluated with
BinaryClassificationEvaluator
| Metric | allstats-semantic-mini-v1_test | allstats-semantic-mini-v1_dev |
|---|---|---|
| cosine_accuracy | 0.965 | 0.9651 |
| cosine_accuracy_threshold | 0.6882 | 0.6834 |
| cosine_f1 | 0.9462 | 0.9465 |
| cosine_f1_threshold | 0.6882 | 0.6834 |
| cosine_precision | 0.9409 | 0.9415 |
| cosine_recall | 0.9515 | 0.9515 |
| cosine_ap | 0.9858 | 0.9862 |
| cosine_mcc | 0.9203 | 0.9207 |
Training Details
Training Dataset
query-hard-pos-neg-doc-pairs-statictable
- Dataset: query-hard-pos-neg-doc-pairs-statictable at 7b28b96
- Size: 25,580 training samples
- Columns:
query,doc, andlabel - Approximate statistics based on the first 1000 samples:
query doc label type string string int details - min: 7 tokens
- mean: 20.14 tokens
- max: 55 tokens
- min: 5 tokens
- mean: 24.9 tokens
- max: 47 tokens
- 0: ~70.80%
- 1: ~29.20%
- Samples:
query doc label Status pekerjaan utama penduduk usia 15+ yang bekerja, 2020Jumlah Penghuni Lapas per Kanwil0status pekerjaan utama penduduk usia 15+ yang bekerja, 2020Jumlah Penghuni Lapas per Kanwil0STATUS PEKERJAAN UTAMA PENDUDUK USIA 15+ YANG BEKERJA, 2020Jumlah Penghuni Lapas per Kanwil0 - Loss:
OnlineContrastiveLoss
Evaluation Dataset
query-hard-pos-neg-doc-pairs-statictable
- Dataset: query-hard-pos-neg-doc-pairs-statictable at 7b28b96
- Size: 5,479 evaluation samples
- Columns:
query,doc, andlabel - Approximate statistics based on the first 1000 samples:
query doc label type string string int details - min: 7 tokens
- mean: 20.78 tokens
- max: 52 tokens
- min: 4 tokens
- mean: 26.28 tokens
- max: 43 tokens
- 0: ~71.50%
- 1: ~28.50%
- Samples:
query doc label Bagaimana perbandingan PNS pria dan wanita di berbagai golongan tahun 2014?Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama (ribu rupiah), 20170bagaimana perbandingan pns pria dan wanita di berbagai golongan tahun 2014?Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama (ribu rupiah), 20170BAGAIMANA PERBANDINGAN PNS PRIA DAN WANITA DI BERBAGAI GOLONGAN TAHUN 2014?Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama (ribu rupiah), 20170 - Loss:
OnlineContrastiveLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 16per_device_eval_batch_size: 16num_train_epochs: 1warmup_ratio: 0.1fp16: Trueload_best_model_at_end: Trueeval_on_start: True
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Trueuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | Validation Loss | allstats-semantic-mini-v1_test_cosine_ap | allstats-semantic-mini-v1_dev_cosine_ap |
|---|---|---|---|---|---|
| -1 | -1 | - | - | 0.8789 | - |
| 0 | 0 | - | 0.4455 | - | 0.8789 |
| 0.0125 | 20 | 0.4484 | 0.3363 | - | 0.8893 |
| 0.0250 | 40 | 0.1921 | 0.2230 | - | 0.9052 |
| 0.0375 | 60 | 0.1779 | 0.1435 | - | 0.9440 |
| 0.0500 | 80 | 0.1047 | 0.1269 | - | 0.9511 |
| 0.0625 | 100 | 0.0669 | 0.1498 | - | 0.9445 |
| 0.0750 | 120 | 0.1662 | 0.1028 | - | 0.9630 |
| 0.0876 | 140 | 0.0774 | 0.1115 | - | 0.9589 |
| 0.1001 | 160 | 0.0947 | 0.1204 | - | 0.9500 |
| 0.1126 | 180 | 0.1285 | 0.1464 | - | 0.9456 |
| 0.1251 | 200 | 0.0793 | 0.1024 | - | 0.9600 |
| 0.1376 | 220 | 0.0792 | 0.0992 | - | 0.9607 |
| 0.1501 | 240 | 0.0696 | 0.0931 | - | 0.9642 |
| 0.1626 | 260 | 0.0692 | 0.1205 | - | 0.9538 |
| 0.1751 | 280 | 0.1015 | 0.0980 | - | 0.9629 |
| 0.1876 | 300 | 0.0628 | 0.1001 | - | 0.9634 |
| 0.2001 | 320 | 0.0335 | 0.1094 | - | 0.9650 |
| 0.2126 | 340 | 0.0668 | 0.0941 | - | 0.9673 |
| 0.2251 | 360 | 0.0662 | 0.0765 | - | 0.9748 |
| 0.2376 | 380 | 0.0251 | 0.0674 | - | 0.9784 |
| 0.2502 | 400 | 0.0771 | 0.0667 | - | 0.9805 |
| 0.2627 | 420 | 0.0363 | 0.0576 | - | 0.9785 |
| 0.2752 | 440 | 0.0762 | 0.0787 | - | 0.9726 |
| 0.2877 | 460 | 0.0475 | 0.0649 | - | 0.9773 |
| 0.3002 | 480 | 0.0086 | 0.0692 | - | 0.9760 |
| 0.3127 | 500 | 0.0242 | 0.0636 | - | 0.9771 |
| 0.3252 | 520 | 0.0342 | 0.0700 | - | 0.9758 |
| 0.3377 | 540 | 0.0568 | 0.0547 | - | 0.9792 |
| 0.3502 | 560 | 0.0286 | 0.0508 | - | 0.9808 |
| 0.3627 | 580 | 0.0426 | 0.0518 | - | 0.9823 |
| 0.3752 | 600 | 0.03 | 0.0553 | - | 0.9806 |
| 0.3877 | 620 | 0.0146 | 0.0826 | - | 0.9748 |
| 0.4003 | 640 | 0.0417 | 0.0667 | - | 0.9779 |
| 0.4128 | 660 | 0.0081 | 0.0667 | - | 0.9775 |
| 0.4253 | 680 | 0.0094 | 0.0704 | - | 0.9798 |
| 0.4378 | 700 | 0.0225 | 0.0525 | - | 0.9841 |
| 0.4503 | 720 | 0.0217 | 0.0462 | - | 0.9861 |
| 0.4628 | 740 | 0.011 | 0.0466 | - | 0.9858 |
| 0.4753 | 760 | 0.0191 | 0.0495 | - | 0.9846 |
| 0.4878 | 780 | 0.0146 | 0.0478 | - | 0.9847 |
| 0.5003 | 800 | 0.0076 | 0.0424 | - | 0.9852 |
| 0.5128 | 820 | 0.035 | 0.0549 | - | 0.9821 |
| 0.5253 | 840 | 0.0321 | 0.0551 | - | 0.9796 |
| 0.5378 | 860 | 0.0241 | 0.0559 | - | 0.9781 |
| 0.5503 | 880 | 0.0335 | 0.0525 | - | 0.9792 |
| 0.5629 | 900 | 0.0125 | 0.0539 | - | 0.9799 |
| 0.5754 | 920 | 0.0154 | 0.0512 | - | 0.9823 |
| 0.5879 | 940 | 0.0133 | 0.0497 | - | 0.9824 |
| 0.6004 | 960 | 0.0072 | 0.0532 | - | 0.9821 |
| 0.6129 | 980 | 0.0192 | 0.0520 | - | 0.9809 |
| 0.6254 | 1000 | 0.0199 | 0.0503 | - | 0.9811 |
| 0.6379 | 1020 | 0.0069 | 0.0484 | - | 0.9824 |
| 0.6504 | 1040 | 0.0065 | 0.0514 | - | 0.9806 |
| 0.6629 | 1060 | 0.0098 | 0.0479 | - | 0.9834 |
| 0.6754 | 1080 | 0.0 | 0.0480 | - | 0.9841 |
| 0.6879 | 1100 | 0.0247 | 0.0508 | - | 0.9835 |
| 0.7004 | 1120 | 0.0137 | 0.0481 | - | 0.9842 |
| 0.7129 | 1140 | 0.0068 | 0.0512 | - | 0.9838 |
| 0.7255 | 1160 | 0.0182 | 0.0473 | - | 0.9851 |
| 0.7380 | 1180 | 0.0129 | 0.0442 | - | 0.9859 |
| 0.7505 | 1200 | 0.0 | 0.0436 | - | 0.9860 |
| 0.7630 | 1220 | 0.0073 | 0.0439 | - | 0.9858 |
| 0.7755 | 1240 | 0.0081 | 0.0441 | - | 0.9859 |
| 0.7880 | 1260 | 0.0305 | 0.0460 | - | 0.9857 |
| 0.8005 | 1280 | 0.0003 | 0.0486 | - | 0.9851 |
| 0.8130 | 1300 | 0.0218 | 0.0501 | - | 0.9852 |
| 0.8255 | 1320 | 0.0187 | 0.0435 | - | 0.9844 |
| 0.8380 | 1340 | 0.0205 | 0.0437 | - | 0.9846 |
| 0.8505 | 1360 | 0.0094 | 0.0442 | - | 0.9851 |
| 0.8630 | 1380 | 0.0083 | 0.0426 | - | 0.9856 |
| 0.8755 | 1400 | 0.0 | 0.0423 | - | 0.9858 |
| 0.8881 | 1420 | 0.0 | 0.0424 | - | 0.9859 |
| 0.9006 | 1440 | 0.0073 | 0.0428 | - | 0.9859 |
| 0.9131 | 1460 | 0.0075 | 0.0441 | - | 0.9859 |
| 0.9256 | 1480 | 0.0177 | 0.0447 | - | 0.9858 |
| 0.9381 | 1500 | 0.0 | 0.0438 | - | 0.9858 |
| 0.9506 | 1520 | 0.0 | 0.0438 | - | 0.9858 |
| 0.9631 | 1540 | 0.0072 | 0.0440 | - | 0.9860 |
| 0.9756 | 1560 | 0.0101 | 0.0436 | - | 0.9861 |
| 0.9881 | 1580 | 0.0277 | 0.0437 | - | 0.9862 |
| -1 | -1 | - | - | 0.9858 | - |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.4.0
- Transformers: 4.48.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 4
Model tree for yahyaabd/allstats-search-miniLM-v1-3
Dataset used to train yahyaabd/allstats-search-miniLM-v1-3
Evaluation results
- Cosine Accuracy on allstats semantic mini v1 testself-reported0.965
- Cosine Accuracy Threshold on allstats semantic mini v1 testself-reported0.688
- Cosine F1 on allstats semantic mini v1 testself-reported0.946
- Cosine F1 Threshold on allstats semantic mini v1 testself-reported0.688
- Cosine Precision on allstats semantic mini v1 testself-reported0.941
- Cosine Recall on allstats semantic mini v1 testself-reported0.952
- Cosine Ap on allstats semantic mini v1 testself-reported0.986
- Cosine Mcc on allstats semantic mini v1 testself-reported0.920
- Cosine Accuracy on allstats semantic mini v1 devself-reported0.965
- Cosine Accuracy Threshold on allstats semantic mini v1 devself-reported0.683