SentenceTransformer based on yahyaabd/bps-custom-tokenizer-paraphrase-multilingual-MiniLM-L12-v2
This is a sentence-transformers model finetuned from yahyaabd/bps-custom-tokenizer-paraphrase-multilingual-MiniLM-L12-v2 on the statictable-triplets-all dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: yahyaabd/bps-custom-tokenizer-paraphrase-multilingual-MiniLM-L12-v2
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("yahyaabd/bps-custom-tokenizer-paraphrase-multilingual-MiniLM-L12-v2-mnrl-2")
# Run inference
sentences = [
'Informasi lengkap dan terbaru mengenai statistik edukasi',
'Statistik Pendidikan Tahunan',
'Struktur Ongkos Riil Usaha Ternak dan Unggas di Rumah Tangga dengan Pola Pemeliharaan Dikandangkan, 2017',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
bps-statictable-ir - Evaluated with
InformationRetrievalEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy@1 | 0.8599 |
| cosine_accuracy@5 | 0.9805 |
| cosine_accuracy@10 | 0.987 |
| cosine_precision@1 | 0.8599 |
| cosine_precision@5 | 0.2326 |
| cosine_precision@10 | 0.1391 |
| cosine_recall@1 | 0.6663 |
| cosine_recall@5 | 0.7919 |
| cosine_recall@10 | 0.8157 |
| cosine_ndcg@1 | 0.8599 |
| cosine_ndcg@5 | 0.8115 |
| cosine_ndcg@10 | 0.8116 |
| cosine_mrr@1 | 0.8599 |
| cosine_mrr@5 | 0.9119 |
| cosine_mrr@10 | 0.9128 |
| cosine_map@1 | 0.8599 |
| cosine_map@5 | 0.7617 |
| cosine_map@10 | 0.7558 |
Training Details
Training Dataset
statictable-triplets-all
- Dataset: statictable-triplets-all at 0ef226c
- Size: 10,998 training samples
- Columns:
query,positive, andnegative - Approximate statistics based on the first 1000 samples:
query positive negative type string string string details - min: 6 tokens
- mean: 17.25 tokens
- max: 33 tokens
- min: 5 tokens
- mean: 25.66 tokens
- max: 58 tokens
- min: 4 tokens
- mean: 25.64 tokens
- max: 58 tokens
- Samples:
query positive negative Neraca arus kas triwulan II 2005 (ringkasan, )Ringkasan Neraca Arus Dana, Triwulan Kedua, 2005, (Miliar Rupiah)Rata-rata Upah/Gaji Bersih Sebulan Buruh/Karyawan/Pegawai Menurut Provinsi dan Jenis Pekerjaan Utama (Rupiah), 2017Hasil tangkapan ikan per provinsi, bedakan jenis penangkapan, 2013Produksi Perikanan Tangkap Menurut Provinsi dan Jenis Penangkapan, 2000-2020Ringkasan Neraca Arus Dana, Triwulan II, 2006, (Miliar Rupiah)Bagaimana perubahan distribusi pengeluaran?Persentase Perkembangan Distribusi PengeluaranAngka Kematian Bayi/AKB (Infant Mortality Rate/IMR) Menurut Provinsi, 1971-2020 - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
statictable-triplets-all
- Dataset: statictable-triplets-all at 0ef226c
- Size: 10,998 evaluation samples
- Columns:
query,positive, andnegative - Approximate statistics based on the first 1000 samples:
query positive negative type string string string details - min: 4 tokens
- mean: 17.25 tokens
- max: 34 tokens
- min: 4 tokens
- mean: 25.44 tokens
- max: 58 tokens
- min: 5 tokens
- mean: 25.23 tokens
- max: 58 tokens
- Samples:
query positive negative Data total penghasilan berbagai golongan rumah tangga setelah dipotong pajak, tahun 2000 (dalam )Jumlah Pendapatan Setelah Pajak Menurut Golongan Rumah Tangga (miliar rupiah), 2000, 2005, dan 2008Indeks Harga Konsumen per Kelompok di 82 Kota 1 (2012=100)Bagaimana perkembangan impor barang modal pada tahun 2020Impor Barang Modal, 1996-2023Indeks Harga yang Diterima Petani (It), Indes Harga yang Dibayar Petani (Ib), dan Nilai Tukar Petani Subsektor Hortikultura (NTPH) di Indonesia (2007=100), 2008-2016Konsumsi makanan per orang di Kalut: data mingguan, beda kelompok pengeluaran (2018)Rata-rata Konsumsi dan Pengeluaran Perkapita Seminggu Menurut Komoditi Makanan dan Golongan Pengeluaran per Kapita Seminggu di Provinsi Kalimantan Utara, 2018-2023Ekspor Kimia Dasar Organik yang Bersumber dari Hasil Pertanian menurut Negara Tujuan Utama, 2012-2023 - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 32per_device_eval_batch_size: 32weight_decay: 0.01warmup_ratio: 0.1save_on_each_node: Truefp16: Truedataloader_num_workers: 2load_best_model_at_end: Trueeval_on_start: Truebatch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 32per_device_eval_batch_size: 32per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.01adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 3max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Truesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 2dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size: 0fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Trueuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | Validation Loss | bps-statictable-ir_cosine_ndcg@10 |
|---|---|---|---|---|
| 0 | 0 | - | 2.2208 | 0.3476 |
| 0.0645 | 20 | 1.7839 | 0.9899 | 0.5271 |
| 0.1290 | 40 | 0.7326 | 0.4401 | 0.7019 |
| 0.1935 | 60 | 0.3811 | 0.2612 | 0.7584 |
| 0.2581 | 80 | 0.2068 | 0.2111 | 0.7612 |
| 0.3226 | 100 | 0.2206 | 0.1526 | 0.7748 |
| 0.3871 | 120 | 0.1547 | 0.1065 | 0.7934 |
| 0.4516 | 140 | 0.1196 | 0.0895 | 0.7880 |
| 0.5161 | 160 | 0.1107 | 0.0821 | 0.8045 |
| 0.5806 | 180 | 0.1253 | 0.0737 | 0.7828 |
| 0.6452 | 200 | 0.0915 | 0.0636 | 0.8081 |
| 0.7097 | 220 | 0.0592 | 0.0555 | 0.8140 |
| 0.7742 | 240 | 0.055 | 0.0535 | 0.7992 |
| 0.8387 | 260 | 0.0531 | 0.0487 | 0.8005 |
| 0.9032 | 280 | 0.0626 | 0.0429 | 0.8035 |
| 0.9677 | 300 | 0.0406 | 0.0407 | 0.8033 |
| 1.0323 | 320 | 0.034 | 0.0430 | 0.8058 |
| 1.0968 | 340 | 0.0327 | 0.0392 | 0.8070 |
| 1.1613 | 360 | 0.0385 | 0.0425 | 0.8006 |
| 1.2258 | 380 | 0.0233 | 0.0347 | 0.8053 |
| 1.2903 | 400 | 0.027 | 0.0339 | 0.8111 |
| 1.3548 | 420 | 0.0323 | 0.0300 | 0.8046 |
| 1.4194 | 440 | 0.0308 | 0.0262 | 0.8126 |
| 1.4839 | 460 | 0.0343 | 0.0277 | 0.7961 |
| 1.5484 | 480 | 0.0192 | 0.0232 | 0.8080 |
| 1.6129 | 500 | 0.0248 | 0.0248 | 0.8057 |
| 1.6774 | 520 | 0.0178 | 0.0250 | 0.8062 |
| 1.7419 | 540 | 0.0158 | 0.0228 | 0.8096 |
| 1.8065 | 560 | 0.0171 | 0.0233 | 0.8073 |
| 1.8710 | 580 | 0.0204 | 0.0218 | 0.8178 |
| 1.9355 | 600 | 0.0261 | 0.0214 | 0.8204 |
| 2.0 | 620 | 0.0132 | 0.0215 | 0.8166 |
| 2.0645 | 640 | 0.0174 | 0.0189 | 0.8169 |
| 2.1290 | 660 | 0.0095 | 0.0185 | 0.8202 |
| 2.1935 | 680 | 0.0186 | 0.0173 | 0.8173 |
| 2.2581 | 700 | 0.0241 | 0.0168 | 0.8174 |
| 2.3226 | 720 | 0.0152 | 0.0158 | 0.8163 |
| 2.3871 | 740 | 0.0197 | 0.0158 | 0.8128 |
| 2.4516 | 760 | 0.0119 | 0.0156 | 0.8122 |
| 2.5161 | 780 | 0.0128 | 0.0151 | 0.8118 |
| 2.5806 | 800 | 0.0162 | 0.0148 | 0.8114 |
| 2.6452 | 820 | 0.011 | 0.0143 | 0.8117 |
| 2.7097 | 840 | 0.0098 | 0.0138 | 0.8128 |
| 2.7742 | 860 | 0.0092 | 0.0135 | 0.8111 |
| 2.8387 | 880 | 0.0102 | 0.0127 | 0.8109 |
| 2.9032 | 900 | 0.0118 | 0.0126 | 0.8115 |
| 2.9677 | 920 | 0.0128 | 0.0126 | 0.8116 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.12
- Sentence Transformers: 3.4.0
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.2.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 1
Model tree for yahyaabd/bps-custom-tokenizer-paraphrase-multilingual-MiniLM-L12-v2-mnrl-2
Dataset used to train yahyaabd/bps-custom-tokenizer-paraphrase-multilingual-MiniLM-L12-v2-mnrl-2
Evaluation results
- Cosine Accuracy@1 on bps statictable irself-reported0.860
- Cosine Accuracy@5 on bps statictable irself-reported0.980
- Cosine Accuracy@10 on bps statictable irself-reported0.987
- Cosine Precision@1 on bps statictable irself-reported0.860
- Cosine Precision@5 on bps statictable irself-reported0.233
- Cosine Precision@10 on bps statictable irself-reported0.139
- Cosine Recall@1 on bps statictable irself-reported0.666
- Cosine Recall@5 on bps statictable irself-reported0.792
- Cosine Recall@10 on bps statictable irself-reported0.816
- Cosine Ndcg@1 on bps statictable irself-reported0.860