SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-mpnet-base-v2 on the statictable-triplets-all dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("yahyaabd/paraphrase-multilingual-mpnet-base-v2-mnrl")
# Run inference
sentences = [
'Seperti apa rincian inflasi di Indonesia, termasuk inflasi inti dan harga diatur, pada 2020?',
'Inflasi Umum, Inti, Harga Yang Diatur Pemerintah, dan Barang Bergejolak Inflasi Indonesia, 2009-2024',
'Angka Kematian Ibu/AKI (Maternal Mortality Rate/MMR) Hasil Long Form SP2020 Menurut Provinsi, 2020',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
bps-statictable-ir - Evaluated with
InformationRetrievalEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy@1 | 0.9609 |
| cosine_accuracy@5 | 0.9967 |
| cosine_accuracy@10 | 1.0 |
| cosine_precision@1 | 0.9609 |
| cosine_precision@5 | 0.2339 |
| cosine_precision@10 | 0.1349 |
| cosine_recall@1 | 0.7591 |
| cosine_recall@5 | 0.8053 |
| cosine_recall@10 | 0.825 |
| cosine_ndcg@1 | 0.9609 |
| cosine_ndcg@5 | 0.8586 |
| cosine_ndcg@10 | 0.854 |
| cosine_mrr@1 | 0.9609 |
| cosine_mrr@5 | 0.9769 |
| cosine_mrr@10 | 0.9773 |
| cosine_map@1 | 0.9609 |
| cosine_map@5 | 0.8187 |
| cosine_map@10 | 0.8083 |
Training Details
Training Dataset
statictable-triplets-all
- Dataset: statictable-triplets-all at 24979b4
- Size: 967,831 training samples
- Columns:
query,pos, andneg - Approximate statistics based on the first 1000 samples:
query pos neg type string string string details - min: 4 tokens
- mean: 18.38 tokens
- max: 35 tokens
- min: 4 tokens
- mean: 25.39 tokens
- max: 50 tokens
- min: 4 tokens
- mean: 25.6 tokens
- max: 58 tokens
- Samples:
query pos neg Neraca arus dana triwulan I tahun 2004 (ringkasan, miliar)Ringkasan Neraca Arus Dana Triwulan I 2004 (Miliar Rupiah)Proporsi Penduduk Berumur 10 Tahun ke Atas yang Membaca Surat Kabar/Majalah Selama Seminggu Terakhir menurut Provinsi, Tipe Daerah dan Jenis Kelamin, 2012Kumpulan dokumen Rencana Pengurangan Bencana level kabupaten dan kotaRekap Dokumen RPB Kabupaten/KotaPenduduk Berumur 15 Tahun Ke Atas yang Bekerja Selama Seminggu yang Lalu Menurut Golongan Umur dan Jumlah Jam Kerja Seluruhnya, 1986-1996IHK dan gaji bulanan buruh hotel, di bawah supervisor, 2007=100, tahun 2009IHK dan Rata-rata Upah per Bulan Buruh Hotel di Bawah Mandor (Supervisor), 2007-2014 (2007=100)Rata-Rata Bulanan Konsentrasi Partikel Terlarut di Udara Beberapa Kota Menurut Bulan dan Kota (μgr/m3), 2006-2015 - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
statictable-triplets-all
- Dataset: statictable-triplets-all at 24979b4
- Size: 967,831 evaluation samples
- Columns:
query,pos, andneg - Approximate statistics based on the first 1000 samples:
query pos neg type string string string details - min: 4 tokens
- mean: 18.39 tokens
- max: 35 tokens
- min: 4 tokens
- mean: 25.42 tokens
- max: 58 tokens
- min: 4 tokens
- mean: 25.6 tokens
- max: 50 tokens
- Samples:
query pos neg Bagaimana hubungan IHK dan rata-rata upah buruh hotel (bukan supervisor), acuan 2012, sekitar tahun 2012IHK dan Rata-rata Upah per Bulan Buruh Hotel di Bawah Mandor (Supervisor), 2012-2014 (2012=100)Perkembangan Beberapa Agregat Pendapatan dan Pendapatan per Kapita Atas Dasar Harga Berlaku, 2010-2016Kegiatan mingguan penduduk 15+ (berdasarkan pendidikan terakhir), 1990Penduduk Berumur 15 Tahun Ke Atas Menurut Pendidikan Tertinggi yang Ditamatkan dan Jenis Kegiatan Selama Seminggu yang Lalu, 1986-1996Transaksi Total Atas Dasar Harga Dasar, 2010Bandingkan indeks harga konsumen (inflasi) di kota-kota Sumatera vs nasional, Desember 2023Perbandingan Indeks dan Tingkat Inflasi Desember 2023 Kota-kota di Pulau Sumatera dengan Nasional (2018=100)Persentase Penduduk Berumur 15 tahun Ke Atas menurut Jenis Kegiatan Seminggu Yang Lalu, 2009-2012 - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 16per_device_eval_batch_size: 16num_train_epochs: 1warmup_ratio: 0.1fp16: Trueload_best_model_at_end: Trueeval_on_start: Truebatch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Trueuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | Validation Loss | bps-statictable-ir_cosine_ndcg@10 |
|---|---|---|---|---|
| 0 | 0 | - | 0.7057 | 0.5598 |
| 0.0348 | 100 | 0.2794 | 0.0554 | 0.8089 |
| 0.0696 | 200 | 0.0545 | 0.0389 | 0.8189 |
| 0.1044 | 300 | 0.041 | 0.0407 | 0.8194 |
| 0.1392 | 400 | 0.0381 | 0.0366 | 0.8186 |
| 0.1740 | 500 | 0.0441 | 0.0283 | 0.8250 |
| 0.2088 | 600 | 0.0235 | 0.0212 | 0.8405 |
| 0.2436 | 700 | 0.0216 | 0.0175 | 0.8256 |
| 0.2784 | 800 | 0.0175 | 0.0119 | 0.8269 |
| 0.3132 | 900 | 0.0144 | 0.0131 | 0.8086 |
| 0.3479 | 1000 | 0.008 | 0.0111 | 0.8269 |
| 0.3827 | 1100 | 0.01 | 0.0106 | 0.8251 |
| 0.4175 | 1200 | 0.0238 | 0.0138 | 0.8296 |
| 0.4523 | 1300 | 0.0218 | 0.0074 | 0.8360 |
| 0.4871 | 1400 | 0.0126 | 0.0077 | 0.8257 |
| 0.5219 | 1500 | 0.0082 | 0.0101 | 0.8447 |
| 0.5567 | 1600 | 0.01 | 0.0057 | 0.8513 |
| 0.5915 | 1700 | 0.0057 | 0.0060 | 0.8500 |
| 0.6263 | 1800 | 0.0069 | 0.0051 | 0.8522 |
| 0.6611 | 1900 | 0.0062 | 0.0053 | 0.8477 |
| 0.6959 | 2000 | 0.0056 | 0.0057 | 0.8541 |
| 0.7307 | 2100 | 0.0081 | 0.0051 | 0.8492 |
| 0.7655 | 2200 | 0.0048 | 0.0049 | 0.8455 |
| 0.8003 | 2300 | 0.004 | 0.0047 | 0.8493 |
| 0.8351 | 2400 | 0.0068 | 0.0041 | 0.8522 |
| 0.8699 | 2500 | 0.003 | 0.0036 | 0.8530 |
| 0.9047 | 2600 | 0.0029 | 0.0035 | 0.8509 |
| 0.9395 | 2700 | 0.0031 | 0.0035 | 0.8518 |
| 0.9743 | 2800 | 0.002 | 0.0034 | 0.854 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.48.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.3.0
- Datasets: 3.4.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- -
Model tree for yahyaabd/paraphrase-multilingual-mpnet-base-v2-mnrl
Dataset used to train yahyaabd/paraphrase-multilingual-mpnet-base-v2-mnrl
Evaluation results
- Cosine Accuracy@1 on bps statictable irself-reported0.961
- Cosine Accuracy@5 on bps statictable irself-reported0.997
- Cosine Accuracy@10 on bps statictable irself-reported1.000
- Cosine Precision@1 on bps statictable irself-reported0.961
- Cosine Precision@5 on bps statictable irself-reported0.234
- Cosine Precision@10 on bps statictable irself-reported0.135
- Cosine Recall@1 on bps statictable irself-reported0.759
- Cosine Recall@5 on bps statictable irself-reported0.805
- Cosine Recall@10 on bps statictable irself-reported0.825
- Cosine Ndcg@1 on bps statictable irself-reported0.961