Gemma3 ExamGen (Korean, XML)
TL;DR: A Gemma-3โbased model fine-tuned to generate Korean university-level exam questions in strict XML (5 problems: 2 MCQ, 2 short-answer, 1 essay).
Outputs are in Korean.
Overview
Gemma3 ExamGen is a fine-tuned variant of Gemma-3 designed to generate Korean university exam questions in a strict XML structure.
It produces exactly five problems while enforcing the format and concept diversity.
Intended Use
- Primary : Generate Korean exam problems in XML.
- Output Language : Korean only.
- Not for : factual certification, grading, or unreviewed deployment.
Training Pipeline
- Base :
google/gemma-3-4b-it - Stages : SFT โ DPO โ GRPO
- Method : LoRA fine-tuning
- Data : PDF-crawled educational materials (private)
- Filtering : ensured XML validity and unique concepts.
Prompting Spec (Korean Prompt Template)
The model must always produce Korean outputs.
It strictly follows the XML schema and rules defined below.
When using this model, fill{KEYS}and{PHRS}placeholders with your own keywords and sentences extracted from context.
Prompt Template (in Korean)
๋ค์์ ๊ท์น์ ์ค์ํ์ฌ ๋ํ๊ต ์ํ ๋ฌธ์ 5๊ฐ๋ฅผ XML ํ์์ผ๋ก ์์ฑํ์ธ์.
**์๋ต ํ์ (๋ฐ๋์ ์ค์):**
<problems>
<problem>
<number>1</number>
<type>๊ฐ๊ด์</type>
<content>๋ฌธ์ ๋ด์ฉ</content>
<description>ํ์ด๊ณผ์ </description>
<answer>๋ต</answer>
</problem>
<problem>
<number>2</number>
<type>๊ฐ๊ด์</type>
<content>๋ฌธ์ ๋ด์ฉ</content>
<description>ํ์ด๊ณผ์ </description>
<answer>๋ต</answer>
</problem>
<problem>
<number>3</number>
<type>๋จ๋ตํ</type>
<content>๋ฌธ์ ๋ด์ฉ</content>
<description>ํ์ด๊ณผ์ </description>
<answer>๋ต</answer>
</problem>
<problem>
<number>4</number>
<type>๋จ๋ตํ</type>
<content>๋ฌธ์ ๋ด์ฉ</content>
<description>ํ์ด๊ณผ์ </description>
<answer>๋ต</answer>
</problem>
<problem>
<number>5</number>
<type>์ฃผ๊ด์</type>
<content>๋ฌธ์ ๋ด์ฉ</content>
<answer>๋ต</answer>
</problem>
</problems>
**์ ๋ ๊ท์น (์๋ฐ ์ ์๋ต ๋ฌดํจ):**
1. XML ํ๊ทธ ๊ตฌ์กฐ๋ง ์ถ๋ ฅํฉ๋๋ค. ๋ค๋ฅธ ํ
์คํธ, ์ค๋ช
, ์ฃผ์์ ํฌํจํ์ง ์์ต๋๋ค.
2. ๋ชจ๋ ๋ด์ฉ์ CDATA ์น์
์์ด ์ผ๋ฐ ํ
์คํธ๋ก ์์ฑํฉ๋๋ค.
3. ํน์๋ฌธ์๋ XML ์ํฐํฐ๋ก ์์ฑํฉ๋๋ค. (<, >, &, ", ')
**๋ฌธ์ ์์ฑ ๊ท์น:**
- ์ด 5๋ฌธ์ ๋ฅผ ์์ฑํ๋ฉฐ, ๋ฌธ์ ์ ํ์ ๋ค์ ๋น์จ์ ๋ฐ๋์ ์งํต๋๋ค: ๊ฐ๊ด์ 2๋ฌธ์ , ๋จ๋ตํ 2๋ฌธ์ , ์ฃผ๊ด์ 1๋ฌธ์ .
- ๊ฐ ๋ฌธ์ ์ <type>์ ์ ์๋ต ํ์์์ ์ด๋ฏธ ์ง์ ๋ ๊ฐ์ ๊ทธ๋๋ก ์ฌ์ฉํฉ๋๋ค.
- ๊ฐ๊ด์ ๋ฌธ์ ๋ ๋ณด๊ธฐ ๊ธฐํธ๋ฅผ โ , โก, โข, โฃ, โค ํ์์ผ๋ก ์์ฑํฉ๋๋ค.
- ๋ชจ๋ ๋ฌธ์ ๋ ์๋ก ๋ค๋ฅธ ์ฃผ์ ๊ฐ๋
์ ์ฌ์ฉํด์ผ ํ๋ฉฐ, ๋์ผ ๊ฐ๋
์ด๋ ๋์ผ ์ธ๋ฌผ, ๋์ผ ์ฌ๊ฑด์ ๋ค๋ฅธ ๋ฌธ์ ์์ ์ฌ์ฌ์ฉํ์ง ์์ต๋๋ค.
- ํ์ด๊ณผ์ ๊ณผ ๋ต์ ๊ตฌ์ฒด์ ์ผ๋ก ์์ฑํฉ๋๋ค.
- ๋ฌธ์ ๋ด์ฉ์ ๋ฐ์ดํ, ์์, ํน์๋ฌธ์ ๋ฑ์ ์์ ๋กญ๊ฒ ์ฌ์ฉํ ์ ์์ต๋๋ค.
- ๋ฌธ์ ๋ ๋์ด๋์ ํํ ๋ฐฉ์์ ๋ค์ํ๊ฒ ๊ตฌ์ฑํฉ๋๋ค.
**์ค์ํ ํค์๋:**
{KEYS}
**์ค์ํ ๋ฌธ์ฅ๋ค:**
{PHRS}
Example Usage
from transformers import AutoProcessor, AutoModelForImageTextToText
import torch
model_id = "yongjin-KIM/gemma3-examgen"
model = AutoModelForImageTextToText.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto")
processor = AutoProcessor.from_pretrained(model_id)
tok = processor.tokenizer
prompt = """<Insert the Korean prompt template here and replace {KEYS} and {PHRS}>"""
inputs = tok(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(
**inputs,
max_new_tokens=2000,
temperature=0.7,
top_p=0.9,
do_sample=True,
)
print(tok.decode(outputs[0], skip_special_tokens=True))
Output Format Guarantees
- Always produces well-formed XML.
- Exactly 5
<problem>blocks. - Escapes all special characters (
<,>,&,",'). - Fixed type order:
๊ฐ๊ด์, ๊ฐ๊ด์, ๋จ๋ตํ, ๋จ๋ตํ, ์ฃผ๊ด์.
Limitations
- May occasionally omit
<description>fields or produce overlong answers. - Factual correctness is not guaranteed.
- Designed for Korean text only; English prompts are not supported.
- Contextual consistency may vary depending on {KEYS}/{PHRS} quality.
Ethical Considerations
- Intended for educational and research use only.
- Should not be used for unsupervised or high-stakes exam generation.
- All generated content should be reviewed by a human instructor before use.
Model Details
- Base Model:
google/gemma-3-4b-it - Architecture: Decoder-only transformer
- Fine-tuning Method: LoRA (r=8, ฮฑ=32)
- Training Framework: PEFT + TRL
- Training Hardware: 2 ร A100 (80GB)
- Training Duration: ~48 hours
- Stages: SFT โ DPO โ GRPO
License
- Model: CC-BY-NC-4.0
- Base Model: Gemma-3 (Google)
- Dataset: Private (PDF-crawled educational material)
- Intended Use: Research / Non-commercial
Maintainer
Author: Yongjin Kim
Hugging Face: @yongjin-KIM
- Downloads last month
- 13