SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-mpnet-base-v2 on the csv dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-mpnet-base-v2
- Maximum Sequence Length: 384 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- csv
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("yudude/all-mpnet-base-v2-sts")
# Run inference
sentences = [
" - PTP Unlocked|Reported by & Contact # DU Health Check\nImpact: UE's will roam What groups are engaged: NOCoE\nFull issue description: -PTP Unlocked",
'DU Health reported PTP unlocked',
'DU PTP unlocked',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts-dev - Evaluated with
EmbeddingSimilarityEvaluator
| Metric | Value |
|---|---|
| pearson_cosine | 0.8503 |
| spearman_cosine | 0.8647 |
| pearson_manhattan | 0.8611 |
| spearman_manhattan | 0.8633 |
| pearson_euclidean | 0.8628 |
| spearman_euclidean | 0.8647 |
| pearson_dot | 0.8503 |
| spearman_dot | 0.8647 |
| pearson_max | 0.8628 |
| spearman_max | 0.8647 |
Training Details
Training Dataset
csv
- Dataset: csv
- Size: 60 training samples
- Columns:
description,search_key, andlabel - Approximate statistics based on the first 60 samples:
description search_key label type string string float details - min: 20 tokens
- mean: 143.83 tokens
- max: 384 tokens
- min: 5 tokens
- mean: 8.75 tokens
- max: 13 tokens
- min: 0.9
- mean: 0.95
- max: 0.99
- Samples:
description search_key label UE can not camp on network (drive test)RU Healthcheck is okay Network drive test shows UE cannot attachSamsung Alert : UADPF: 12345 (AAA) - service-off at /0725C-NRUADPF Service off issue0.95Samsung Alert : UADPF: 12345 (AAA) - - service-off at 0725C-NRVendor UADPF service off issue0.94 - Loss:
CosineSimilarityLosswith these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
csv
- Dataset: csv
- Size: 12 evaluation samples
- Columns:
description,search_key, andlabel - Approximate statistics based on the first 12 samples:
description search_key label type string string float details - min: 32 tokens
- mean: 71.67 tokens
- max: 109 tokens
- min: 5 tokens
- mean: 7.92 tokens
- max: 11 tokens
- min: 0.9
- mean: 0.95
- max: 0.99
- Samples:
description search_key label Temperature Sensor Fault ALERTwith Temperature: Max cell ST1 29.4 - PTP UnlockedReported by & Contact # DU Health Check
Impact: UE's will roam
Bridge: https://meet.google.com/oab-hmxd-qsa
What groups are engaged: NOCoE
Full issue description: -PTP UnlockedPrecision Time Protocol (PTP) unlocked- PTP UnlockedReported by & Contact # DU Health Check
Impact: UE's will roam
Bridge: https://meet.google.com/oab-hmxd-qsa
What groups are engaged: NOCoE
Full issue description: -PTP UnlockedDU PTP unlocked - Loss:
CosineSimilarityLosswith these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 4per_device_eval_batch_size: 4learning_rate: 2e-05num_train_epochs: 5warmup_ratio: 0.1fp16: True
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 4per_device_eval_batch_size: 4per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 5max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseeval_use_gather_object: Falsebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | Validation Loss | sts-dev_spearman_cosine |
|---|---|---|---|---|
| 0.2667 | 4 | 0.2285 | 0.1834 | 0.8813 |
| 0.5333 | 8 | 0.1028 | 0.0760 | 0.8815 |
| 0.8 | 12 | 0.0409 | 0.0240 | 0.8803 |
| 1.0667 | 16 | 0.0235 | 0.0080 | 0.8781 |
| 1.3333 | 20 | 0.0077 | 0.0023 | 0.8750 |
| 1.6 | 24 | 0.0031 | 0.0010 | 0.8721 |
| 1.8667 | 28 | 0.0009 | 0.0006 | 0.8697 |
| 2.1333 | 32 | 0.0006 | 0.0006 | 0.8678 |
| 2.4 | 36 | 0.0006 | 0.0006 | 0.8667 |
| 2.6667 | 40 | 0.0009 | 0.0006 | 0.8660 |
| 2.9333 | 44 | 0.0004 | 0.0006 | 0.8654 |
| 3.2 | 48 | 0.0007 | 0.0006 | 0.8651 |
| 3.4667 | 52 | 0.0006 | 0.0006 | 0.8649 |
| 3.7333 | 56 | 0.0005 | 0.0006 | 0.8648 |
| 4.0 | 60 | 0.0003 | 0.0006 | 0.8647 |
| 4.2667 | 64 | 0.0007 | 0.0006 | 0.8647 |
| 4.5333 | 68 | 0.0005 | 0.0006 | 0.8647 |
| 4.8 | 72 | 0.0006 | 0.0006 | 0.8647 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.1
- Transformers: 4.44.2
- PyTorch: 2.5.0+cu121
- Accelerate: 0.34.2
- Datasets: 3.1.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 1
Model tree for yudude/all-mpnet-base-v2-incident-similarity-tuned
Base model
sentence-transformers/all-mpnet-base-v2Evaluation results
- Pearson Cosine on sts devself-reported0.850
- Spearman Cosine on sts devself-reported0.865
- Pearson Manhattan on sts devself-reported0.861
- Spearman Manhattan on sts devself-reported0.863
- Pearson Euclidean on sts devself-reported0.863
- Spearman Euclidean on sts devself-reported0.865
- Pearson Dot on sts devself-reported0.850
- Spearman Dot on sts devself-reported0.865
- Pearson Max on sts devself-reported0.863
- Spearman Max on sts devself-reported0.865