yudude commited on
Commit
bd850dd
·
verified ·
1 Parent(s): 6ed0ed0

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,479 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/all-mpnet-base-v2
3
+ library_name: sentence-transformers
4
+ metrics:
5
+ - pearson_cosine
6
+ - spearman_cosine
7
+ - pearson_manhattan
8
+ - spearman_manhattan
9
+ - pearson_euclidean
10
+ - spearman_euclidean
11
+ - pearson_dot
12
+ - spearman_dot
13
+ - pearson_max
14
+ - spearman_max
15
+ pipeline_tag: sentence-similarity
16
+ tags:
17
+ - sentence-transformers
18
+ - sentence-similarity
19
+ - feature-extraction
20
+ - generated_from_trainer
21
+ - dataset_size:60
22
+ - loss:CosineSimilarityLoss
23
+ widget:
24
+ - source_sentence: '#1# CLCLT00236B - VM not ready | Total Site IDs = 1|Market Affected: CLCLT00236B
25
+
26
+ Reported by: Health check
27
+
28
+ Impact: UE''s roam
29
+
30
+ Full Problem Description: CLCLT00236A - VM not ready
31
+
32
+ External Ticket: N/A
33
+
34
+ Bridge: https://meet.google.com/oab-hmxd-mqb
35
+
36
+ What groups are engaged: VMware
37
+
38
+ Next Action: Assigned the ticket to VMware'
39
+ sentences:
40
+ - Precision Time Protocol (PTP) unlocked
41
+ - Samsung DU Nodes not healthy
42
+ - VMware VM issue
43
+ - source_sentence: '#1# - Nodes Not Healthy, Samsung DU pods count is same as 6 |
44
+ Total Site IDs = 1|Reported by & Contact: Samsung Hypercare Report
45
+
46
+ Impact: UE''s will roam
47
+
48
+ Bridge:https://meet.google.com/oab-hmxd-mqb
49
+
50
+ What groups are engaged: Wireless - NOC VMware FIM, Wireless - NOCoE
51
+
52
+ Full issue description: Nodes Not Healthy, Samsung DU pods count is not 6'
53
+ sentences:
54
+ - Site Sensor temperature alert
55
+ - PRACH zero
56
+ - Samsung DU Pods not count not 6
57
+ - source_sentence: ' - PTP Unlocked|Reported by & Contact # DU Health Check
58
+
59
+ Impact: UE''s will roam
60
+
61
+ Bridge: https://meet.google.com/oab-hmxd-qsa
62
+
63
+ What groups are engaged: NOCoE
64
+
65
+ Full issue description: -PTP Unlocked'
66
+ sentences:
67
+ - DU Health reported PTP unlocked
68
+ - DU PTP unlocked
69
+ - Physical Random access channel value is reported 0
70
+ model-index:
71
+ - name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
72
+ results:
73
+ - task:
74
+ type: semantic-similarity
75
+ name: Semantic Similarity
76
+ dataset:
77
+ name: sts dev
78
+ type: sts-dev
79
+ metrics:
80
+ - type: pearson_cosine
81
+ value: 0.8503399836889165
82
+ name: Pearson Cosine
83
+ - type: spearman_cosine
84
+ value: 0.8646819693607537
85
+ name: Spearman Cosine
86
+ - type: pearson_manhattan
87
+ value: 0.8610822762797875
88
+ name: Pearson Manhattan
89
+ - type: spearman_manhattan
90
+ value: 0.8632509605462457
91
+ name: Spearman Manhattan
92
+ - type: pearson_euclidean
93
+ value: 0.8627648815882912
94
+ name: Pearson Euclidean
95
+ - type: spearman_euclidean
96
+ value: 0.8646819693607537
97
+ name: Spearman Euclidean
98
+ - type: pearson_dot
99
+ value: 0.8503399881242814
100
+ name: Pearson Dot
101
+ - type: spearman_dot
102
+ value: 0.8646819693607537
103
+ name: Spearman Dot
104
+ - type: pearson_max
105
+ value: 0.8627648815882912
106
+ name: Pearson Max
107
+ - type: spearman_max
108
+ value: 0.8646819693607537
109
+ name: Spearman Max
110
+ ---
111
+
112
+ # SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
113
+
114
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) on the csv dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
115
+
116
+ ## Model Details
117
+
118
+ ### Model Description
119
+ - **Model Type:** Sentence Transformer
120
+ - **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision 9a3225965996d404b775526de6dbfe85d3368642 -->
121
+ - **Maximum Sequence Length:** 384 tokens
122
+ - **Output Dimensionality:** 768 tokens
123
+ - **Similarity Function:** Cosine Similarity
124
+ - **Training Dataset:**
125
+ - csv
126
+ <!-- - **Language:** Unknown -->
127
+ <!-- - **License:** Unknown -->
128
+
129
+ ### Model Sources
130
+
131
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
132
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
133
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
134
+
135
+ ### Full Model Architecture
136
+
137
+ ```
138
+ SentenceTransformer(
139
+ (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
140
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
141
+ (2): Normalize()
142
+ )
143
+ ```
144
+
145
+ ## Usage
146
+
147
+ ### Direct Usage (Sentence Transformers)
148
+
149
+ First install the Sentence Transformers library:
150
+
151
+ ```bash
152
+ pip install -U sentence-transformers
153
+ ```
154
+
155
+ Then you can load this model and run inference.
156
+ ```python
157
+ from sentence_transformers import SentenceTransformer
158
+
159
+ # Download from the 🤗 Hub
160
+ model = SentenceTransformer("yudude/all-mpnet-base-v2-sts")
161
+ # Run inference
162
+ sentences = [
163
+ " - PTP Unlocked|Reported by & Contact # DU Health Check\nImpact: UE's will roam\nBridge: https://meet.google.com/oab-hmxd-qsa\nWhat groups are engaged: NOCoE\nFull issue description: -PTP Unlocked",
164
+ 'DU Health reported PTP unlocked',
165
+ 'DU PTP unlocked',
166
+ ]
167
+ embeddings = model.encode(sentences)
168
+ print(embeddings.shape)
169
+ # [3, 768]
170
+
171
+ # Get the similarity scores for the embeddings
172
+ similarities = model.similarity(embeddings, embeddings)
173
+ print(similarities.shape)
174
+ # [3, 3]
175
+ ```
176
+
177
+ <!--
178
+ ### Direct Usage (Transformers)
179
+
180
+ <details><summary>Click to see the direct usage in Transformers</summary>
181
+
182
+ </details>
183
+ -->
184
+
185
+ <!--
186
+ ### Downstream Usage (Sentence Transformers)
187
+
188
+ You can finetune this model on your own dataset.
189
+
190
+ <details><summary>Click to expand</summary>
191
+
192
+ </details>
193
+ -->
194
+
195
+ <!--
196
+ ### Out-of-Scope Use
197
+
198
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
199
+ -->
200
+
201
+ ## Evaluation
202
+
203
+ ### Metrics
204
+
205
+ #### Semantic Similarity
206
+ * Dataset: `sts-dev`
207
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
208
+
209
+ | Metric | Value |
210
+ |:--------------------|:-----------|
211
+ | pearson_cosine | 0.8503 |
212
+ | **spearman_cosine** | **0.8647** |
213
+ | pearson_manhattan | 0.8611 |
214
+ | spearman_manhattan | 0.8633 |
215
+ | pearson_euclidean | 0.8628 |
216
+ | spearman_euclidean | 0.8647 |
217
+ | pearson_dot | 0.8503 |
218
+ | spearman_dot | 0.8647 |
219
+ | pearson_max | 0.8628 |
220
+ | spearman_max | 0.8647 |
221
+
222
+ <!--
223
+ ## Bias, Risks and Limitations
224
+
225
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
226
+ -->
227
+
228
+ <!--
229
+ ### Recommendations
230
+
231
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
232
+ -->
233
+
234
+ ## Training Details
235
+
236
+ ### Training Dataset
237
+
238
+ #### csv
239
+
240
+ * Dataset: csv
241
+ * Size: 60 training samples
242
+ * Columns: <code>description</code>, <code>search_key</code>, and <code>label</code>
243
+ * Approximate statistics based on the first 60 samples:
244
+ | | description | search_key | label |
245
+ |:--------|:-------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------|
246
+ | type | string | string | float |
247
+ | details | <ul><li>min: 20 tokens</li><li>mean: 143.83 tokens</li><li>max: 384 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 8.75 tokens</li><li>max: 13 tokens</li></ul> | <ul><li>min: 0.9</li><li>mean: 0.95</li><li>max: 0.99</li></ul> |
248
+ * Samples:
249
+ | description | search_key | label |
250
+ |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------|:------------------|
251
+ | <code>UE can not camp on network (drive test)|RU Healthcheck is okay</code> | <code>Network drive test shows UE cannot attach</code> | <code>0.98</code> |
252
+ | <code>Samsung Alert : UADPF: 513003017 (ATATL) - UADPF_513003017 - service-off at /ATATL/ATATL00725C-NR|UADPF_513003017 - service-off at /ATATL/ATATL00725C-NR</code> | <code>UADPF Service off issue</code> | <code>0.95</code> |
253
+ | <code>Samsung Alert : UADPF: 513003017 (ATATL) - UADPF_513003017 - service-off at /ATATL/ATATL00725C-NR|UADPF_513003017 - service-off at /ATATL/ATATL00725C-NR</code> | <code>Samsung UADPF service off issue</code> | <code>0.94</code> |
254
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
255
+ ```json
256
+ {
257
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
258
+ }
259
+ ```
260
+
261
+ ### Evaluation Dataset
262
+
263
+ #### csv
264
+
265
+ * Dataset: csv
266
+ * Size: 12 evaluation samples
267
+ * Columns: <code>description</code>, <code>search_key</code>, and <code>label</code>
268
+ * Approximate statistics based on the first 12 samples:
269
+ | | description | search_key | label |
270
+ |:--------|:------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------|
271
+ | type | string | string | float |
272
+ | details | <ul><li>min: 32 tokens</li><li>mean: 71.67 tokens</li><li>max: 109 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 7.92 tokens</li><li>max: 11 tokens</li></ul> | <ul><li>min: 0.9</li><li>mean: 0.95</li><li>max: 0.99</li></ul> |
273
+ * Samples:
274
+ | description | search_key | label |
275
+ |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------|:------------------|
276
+ | <code>Temperature Sensor Fault ALERT | NJJER01462B|NJJER01462B with Temperature: Max cell ST1 29.4 | Max cell ST2 | Min cell ST1 -3276.8 | Min cell ST2 <br>Temperature: 29<br>Sitename :NJJER01462B</code> | <code>Site Sensor temperature alert</code> | <code>0.96</code> |
277
+ | <code> - PTP Unlocked|Reported by & Contact # DU Health Check<br>Impact: UE's will roam<br>Bridge: https://meet.google.com/oab-hmxd-qsa<br>What groups are engaged: NOCoE<br>Full issue description: -PTP Unlocked</code> | <code>Precision Time Protocol (PTP) unlocked</code> | <code>0.94</code> |
278
+ | <code> - PTP Unlocked|Reported by & Contact # DU Health Check<br>Impact: UE's will roam<br>Bridge: https://meet.google.com/oab-hmxd-qsa<br>What groups are engaged: NOCoE<br>Full issue description: -PTP Unlocked</code> | <code>DU PTP unlocked</code> | <code>0.96</code> |
279
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
280
+ ```json
281
+ {
282
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
283
+ }
284
+ ```
285
+
286
+ ### Training Hyperparameters
287
+ #### Non-Default Hyperparameters
288
+
289
+ - `eval_strategy`: steps
290
+ - `per_device_train_batch_size`: 4
291
+ - `per_device_eval_batch_size`: 4
292
+ - `learning_rate`: 2e-05
293
+ - `num_train_epochs`: 5
294
+ - `warmup_ratio`: 0.1
295
+ - `fp16`: True
296
+
297
+ #### All Hyperparameters
298
+ <details><summary>Click to expand</summary>
299
+
300
+ - `overwrite_output_dir`: False
301
+ - `do_predict`: False
302
+ - `eval_strategy`: steps
303
+ - `prediction_loss_only`: True
304
+ - `per_device_train_batch_size`: 4
305
+ - `per_device_eval_batch_size`: 4
306
+ - `per_gpu_train_batch_size`: None
307
+ - `per_gpu_eval_batch_size`: None
308
+ - `gradient_accumulation_steps`: 1
309
+ - `eval_accumulation_steps`: None
310
+ - `torch_empty_cache_steps`: None
311
+ - `learning_rate`: 2e-05
312
+ - `weight_decay`: 0.0
313
+ - `adam_beta1`: 0.9
314
+ - `adam_beta2`: 0.999
315
+ - `adam_epsilon`: 1e-08
316
+ - `max_grad_norm`: 1.0
317
+ - `num_train_epochs`: 5
318
+ - `max_steps`: -1
319
+ - `lr_scheduler_type`: linear
320
+ - `lr_scheduler_kwargs`: {}
321
+ - `warmup_ratio`: 0.1
322
+ - `warmup_steps`: 0
323
+ - `log_level`: passive
324
+ - `log_level_replica`: warning
325
+ - `log_on_each_node`: True
326
+ - `logging_nan_inf_filter`: True
327
+ - `save_safetensors`: True
328
+ - `save_on_each_node`: False
329
+ - `save_only_model`: False
330
+ - `restore_callback_states_from_checkpoint`: False
331
+ - `no_cuda`: False
332
+ - `use_cpu`: False
333
+ - `use_mps_device`: False
334
+ - `seed`: 42
335
+ - `data_seed`: None
336
+ - `jit_mode_eval`: False
337
+ - `use_ipex`: False
338
+ - `bf16`: False
339
+ - `fp16`: True
340
+ - `fp16_opt_level`: O1
341
+ - `half_precision_backend`: auto
342
+ - `bf16_full_eval`: False
343
+ - `fp16_full_eval`: False
344
+ - `tf32`: None
345
+ - `local_rank`: 0
346
+ - `ddp_backend`: None
347
+ - `tpu_num_cores`: None
348
+ - `tpu_metrics_debug`: False
349
+ - `debug`: []
350
+ - `dataloader_drop_last`: False
351
+ - `dataloader_num_workers`: 0
352
+ - `dataloader_prefetch_factor`: None
353
+ - `past_index`: -1
354
+ - `disable_tqdm`: False
355
+ - `remove_unused_columns`: True
356
+ - `label_names`: None
357
+ - `load_best_model_at_end`: False
358
+ - `ignore_data_skip`: False
359
+ - `fsdp`: []
360
+ - `fsdp_min_num_params`: 0
361
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
362
+ - `fsdp_transformer_layer_cls_to_wrap`: None
363
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
364
+ - `deepspeed`: None
365
+ - `label_smoothing_factor`: 0.0
366
+ - `optim`: adamw_torch
367
+ - `optim_args`: None
368
+ - `adafactor`: False
369
+ - `group_by_length`: False
370
+ - `length_column_name`: length
371
+ - `ddp_find_unused_parameters`: None
372
+ - `ddp_bucket_cap_mb`: None
373
+ - `ddp_broadcast_buffers`: False
374
+ - `dataloader_pin_memory`: True
375
+ - `dataloader_persistent_workers`: False
376
+ - `skip_memory_metrics`: True
377
+ - `use_legacy_prediction_loop`: False
378
+ - `push_to_hub`: False
379
+ - `resume_from_checkpoint`: None
380
+ - `hub_model_id`: None
381
+ - `hub_strategy`: every_save
382
+ - `hub_private_repo`: False
383
+ - `hub_always_push`: False
384
+ - `gradient_checkpointing`: False
385
+ - `gradient_checkpointing_kwargs`: None
386
+ - `include_inputs_for_metrics`: False
387
+ - `eval_do_concat_batches`: True
388
+ - `fp16_backend`: auto
389
+ - `push_to_hub_model_id`: None
390
+ - `push_to_hub_organization`: None
391
+ - `mp_parameters`:
392
+ - `auto_find_batch_size`: False
393
+ - `full_determinism`: False
394
+ - `torchdynamo`: None
395
+ - `ray_scope`: last
396
+ - `ddp_timeout`: 1800
397
+ - `torch_compile`: False
398
+ - `torch_compile_backend`: None
399
+ - `torch_compile_mode`: None
400
+ - `dispatch_batches`: None
401
+ - `split_batches`: None
402
+ - `include_tokens_per_second`: False
403
+ - `include_num_input_tokens_seen`: False
404
+ - `neftune_noise_alpha`: None
405
+ - `optim_target_modules`: None
406
+ - `batch_eval_metrics`: False
407
+ - `eval_on_start`: False
408
+ - `eval_use_gather_object`: False
409
+ - `batch_sampler`: batch_sampler
410
+ - `multi_dataset_batch_sampler`: proportional
411
+
412
+ </details>
413
+
414
+ ### Training Logs
415
+ | Epoch | Step | Training Loss | Validation Loss | sts-dev_spearman_cosine |
416
+ |:------:|:----:|:-------------:|:---------------:|:-----------------------:|
417
+ | 0.2667 | 4 | 0.2285 | 0.1834 | 0.8813 |
418
+ | 0.5333 | 8 | 0.1028 | 0.0760 | 0.8815 |
419
+ | 0.8 | 12 | 0.0409 | 0.0240 | 0.8803 |
420
+ | 1.0667 | 16 | 0.0235 | 0.0080 | 0.8781 |
421
+ | 1.3333 | 20 | 0.0077 | 0.0023 | 0.8750 |
422
+ | 1.6 | 24 | 0.0031 | 0.0010 | 0.8721 |
423
+ | 1.8667 | 28 | 0.0009 | 0.0006 | 0.8697 |
424
+ | 2.1333 | 32 | 0.0006 | 0.0006 | 0.8678 |
425
+ | 2.4 | 36 | 0.0006 | 0.0006 | 0.8667 |
426
+ | 2.6667 | 40 | 0.0009 | 0.0006 | 0.8660 |
427
+ | 2.9333 | 44 | 0.0004 | 0.0006 | 0.8654 |
428
+ | 3.2 | 48 | 0.0007 | 0.0006 | 0.8651 |
429
+ | 3.4667 | 52 | 0.0006 | 0.0006 | 0.8649 |
430
+ | 3.7333 | 56 | 0.0005 | 0.0006 | 0.8648 |
431
+ | 4.0 | 60 | 0.0003 | 0.0006 | 0.8647 |
432
+ | 4.2667 | 64 | 0.0007 | 0.0006 | 0.8647 |
433
+ | 4.5333 | 68 | 0.0005 | 0.0006 | 0.8647 |
434
+ | 4.8 | 72 | 0.0006 | 0.0006 | 0.8647 |
435
+
436
+
437
+ ### Framework Versions
438
+ - Python: 3.10.12
439
+ - Sentence Transformers: 3.2.1
440
+ - Transformers: 4.44.2
441
+ - PyTorch: 2.5.0+cu121
442
+ - Accelerate: 0.34.2
443
+ - Datasets: 3.1.0
444
+ - Tokenizers: 0.19.1
445
+
446
+ ## Citation
447
+
448
+ ### BibTeX
449
+
450
+ #### Sentence Transformers
451
+ ```bibtex
452
+ @inproceedings{reimers-2019-sentence-bert,
453
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
454
+ author = "Reimers, Nils and Gurevych, Iryna",
455
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
456
+ month = "11",
457
+ year = "2019",
458
+ publisher = "Association for Computational Linguistics",
459
+ url = "https://arxiv.org/abs/1908.10084",
460
+ }
461
+ ```
462
+
463
+ <!--
464
+ ## Glossary
465
+
466
+ *Clearly define terms in order to be accessible across audiences.*
467
+ -->
468
+
469
+ <!--
470
+ ## Model Card Authors
471
+
472
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
473
+ -->
474
+
475
+ <!--
476
+ ## Model Card Contact
477
+
478
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
479
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-mpnet-base-v2",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.44.2",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.2.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.5.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:667c29983c1a8244b870554b4f5c094f51f18f245a08efcacb6b8f914689154c
3
+ size 437967672
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 384,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": true,
54
+ "cls_token": "<s>",
55
+ "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "mask_token": "<mask>",
58
+ "max_length": 128,
59
+ "model_max_length": 384,
60
+ "pad_to_multiple_of": null,
61
+ "pad_token": "<pad>",
62
+ "pad_token_type_id": 0,
63
+ "padding_side": "right",
64
+ "sep_token": "</s>",
65
+ "stride": 0,
66
+ "strip_accents": null,
67
+ "tokenize_chinese_chars": true,
68
+ "tokenizer_class": "MPNetTokenizer",
69
+ "truncation_side": "right",
70
+ "truncation_strategy": "longest_first",
71
+ "unk_token": "[UNK]"
72
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff