MiniLM-L12-H384 trained on GooAQ
This is a Cross Encoder model finetuned from microsoft/MiniLM-L12-H384-uncased using the sentence-transformers library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.
Model Details
Model Description
- Model Type: Cross Encoder
- Base model: microsoft/MiniLM-L12-H384-uncased
- Maximum Sequence Length: 512 tokens
- Number of Output Labels: 1 label
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Documentation: Cross Encoder Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Cross Encoders on Hugging Face
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import CrossEncoder
# Download from the ๐ค Hub
model = CrossEncoder("zhensuuu/reranker-MiniLM-L12-H384-uncased-intent")
# Get scores for pairs of texts
pairs = [
['Add edge representing resource request', ' Model process-resource dependency relationship'],
['Split text into words list', ' Filter words matching given keyword.'],
['Calculate approximate cube root value', ' Find cube root using exponentiation'],
['Reverse sublist within linked list', ' Move nodes to new positions'],
['Defines neighbors for node A', ' Specifies direct connections from A'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)
# Or rank different texts based on similarity to a single text
ranks = model.rank(
'Add edge representing resource request',
[
' Model process-resource dependency relationship',
' Filter words matching given keyword.',
' Find cube root using exponentiation',
' Move nodes to new positions',
' Specifies direct connections from A',
]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
Evaluation
Metrics
Cross Encoder Reranking
- Datasets:
NanoMSMARCO_R100,NanoNFCorpus_R100andNanoNQ_R100 - Evaluated with
CrossEncoderRerankingEvaluatorwith these parameters:{ "at_k": 10, "always_rerank_positives": true }
| Metric | NanoMSMARCO_R100 | NanoNFCorpus_R100 | NanoNQ_R100 |
|---|---|---|---|
| map | 0.0735 (-0.4161) | 0.3017 (+0.0407) | 0.0837 (-0.3359) |
| mrr@10 | 0.0476 (-0.4299) | 0.4457 (-0.0541) | 0.0661 (-0.3606) |
| ndcg@10 | 0.0687 (-0.4718) | 0.2916 (-0.0335) | 0.0748 (-0.4258) |
Cross Encoder Nano BEIR
- Dataset:
NanoBEIR_R100_mean - Evaluated with
CrossEncoderNanoBEIREvaluatorwith these parameters:{ "dataset_names": [ "msmarco", "nfcorpus", "nq" ], "rerank_k": 100, "at_k": 10, "always_rerank_positives": true }
| Metric | Value |
|---|---|
| map | 0.1529 (-0.2371) |
| mrr@10 | 0.1864 (-0.2816) |
| ndcg@10 | 0.1450 (-0.3104) |
Training Details
Training Dataset
Unnamed Dataset
- Size: 85,938 training samples
- Columns:
questionandanswer - Approximate statistics based on the first 1000 samples:
question answer type string string details - min: 18 characters
- mean: 33.49 characters
- max: 49 characters
- min: 18 characters
- mean: 35.88 characters
- max: 52 characters
- Samples:
question answer Check if configuration loaded successfullyprevent further actions if configuration absentAdd new user to listStore received user in memorySelects profitable jobs and schedulesDisplays scheduled jobs and profit - Loss:
CachedMultipleNegativesRankingLosswith these parameters:{ "scale": 10.0, "num_negatives": 5, "activation_fn": "torch.nn.modules.activation.Sigmoid", "mini_batch_size": 16 }
Evaluation Dataset
Unnamed Dataset
- Size: 1,000 evaluation samples
- Columns:
questionandanswer - Approximate statistics based on the first 1000 samples:
question answer type string string details - min: 20 characters
- mean: 33.63 characters
- max: 54 characters
- min: 18 characters
- mean: 35.86 characters
- max: 55 characters
- Samples:
question answer Add edge representing resource requestModel process-resource dependency relationshipSplit text into words listFilter words matching given keyword.Calculate approximate cube root valueFind cube root using exponentiation - Loss:
CachedMultipleNegativesRankingLosswith these parameters:{ "scale": 10.0, "num_negatives": 5, "activation_fn": "torch.nn.modules.activation.Sigmoid", "mini_batch_size": 16 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 64per_device_eval_batch_size: 64learning_rate: 2e-05num_train_epochs: 1warmup_ratio: 0.1seed: 12bf16: True
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 64per_device_eval_batch_size: 64per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 12data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Truefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportionalrouter_mapping: {}learning_rate_mapping: {}
Training Logs
| Epoch | Step | Training Loss | Validation Loss | NanoMSMARCO_R100_ndcg@10 | NanoNFCorpus_R100_ndcg@10 | NanoNQ_R100_ndcg@10 | NanoBEIR_R100_mean_ndcg@10 |
|---|---|---|---|---|---|---|---|
| -1 | -1 | - | - | 0.0146 (-0.5258) | 0.2622 (-0.0628) | 0.0058 (-0.4949) | 0.0942 (-0.3612) |
| 0.0030 | 1 | 1.7927 | - | - | - | - | - |
| 0.2976 | 100 | 1.2688 | - | - | - | - | - |
| 0.5952 | 200 | 0.8847 | - | - | - | - | - |
| 0.7440 | 250 | - | 0.8479 | 0.0586 (-0.4818) | 0.2978 (-0.0272) | 0.0717 (-0.4290) | 0.1427 (-0.3127) |
| 0.8929 | 300 | 0.8519 | - | - | - | - | - |
| -1 | -1 | - | - | 0.0687 (-0.4718) | 0.2916 (-0.0335) | 0.0748 (-0.4258) | 0.1450 (-0.3104) |
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Energy Consumed: 0.082 kWh
- Carbon Emitted: 0.000 kg of CO2
- Hours Used: 0.306 hours
Training Hardware
- On Cloud: No
- GPU Model: 4 x NVIDIA RTX 6000 Ada Generation
- CPU Model: AMD EPYC 7763 64-Core Processor
- RAM Size: 251.53 GB
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 5.1.0
- Transformers: 4.48.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 6
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for zhensuuu/reranker-MiniLM-L12-H384-uncased-intent
Base model
microsoft/MiniLM-L12-H384-uncasedEvaluation results
- Map on NanoMSMARCO R100self-reported0.073
- Mrr@10 on NanoMSMARCO R100self-reported0.048
- Ndcg@10 on NanoMSMARCO R100self-reported0.069
- Map on NanoNFCorpus R100self-reported0.302
- Mrr@10 on NanoNFCorpus R100self-reported0.446
- Ndcg@10 on NanoNFCorpus R100self-reported0.292
- Map on NanoNQ R100self-reported0.084
- Mrr@10 on NanoNQ R100self-reported0.066
- Ndcg@10 on NanoNQ R100self-reported0.075
- Map on NanoBEIR R100 meanself-reported0.153