Text Classification
Safetensors
Chinese
qwen2

Add library name and link to code

#1
by nielsr HF Staff - opened
Files changed (1) hide show
  1. README.md +29 -10
README.md CHANGED
@@ -1,11 +1,13 @@
1
  ---
2
- license: cc-by-nc-4.0
 
3
  language:
4
  - zh
 
5
  pipeline_tag: text-classification
6
- datasets:
7
- - zjunlp/ChineseHarm-bench
8
  ---
 
9
  ## 🚀Installation
10
 
11
  1. Clone the repositories:
@@ -27,13 +29,17 @@ datasets:
27
 
28
  We release the following variants of our harmful content detection model:
29
 
 
 
 
 
30
  🔹 Single Inference (Example)
31
 
32
- Run single-input inference using the ChineseGuard-3B model:
33
 
34
  ```
35
  SCRIPT_PATH="../infer/single_infer.py"
36
- model_name="zjunlp/ChineseGuard-3B"
37
  text="代发短信,有想做的联系我,无押金"
38
 
39
  python $SCRIPT_PATH \
@@ -43,13 +49,13 @@ python $SCRIPT_PATH \
43
 
44
  🔸 Batch Inference (Multi-NPU or Multi-GPU)
45
 
46
- To run inference on the entire ChineseHarm-Bench using ChineseGuard-3B and 8 NPUs:
47
 
48
  ```
49
  SCRIPT_PATH="../infer/batch_infer.py"
50
- model_name="zjunlp/ChineseHarm-3B"
51
  file_name="../benchmark/bench.json"
52
- output_file="../benchmark/bench_ChineseHarm-3B.json"
53
 
54
  python $SCRIPT_PATH \
55
  --model_name $model_name \
@@ -63,9 +69,20 @@ python $SCRIPT_PATH \
63
  >
64
  > **Note:** The inference scripts support both NPU and GPU devices.
65
 
 
 
 
 
 
 
 
 
 
 
 
66
  ## 🚩Citation
67
 
68
- Please cite our repository if you use ChineseGuard in your work. Thanks!
69
 
70
  ```bibtex
71
  @misc{liu2025chineseharmbenchchineseharmfulcontent,
@@ -77,4 +94,6 @@ Please cite our repository if you use ChineseGuard in your work. Thanks!
77
  primaryClass={cs.CL},
78
  url={https://arxiv.org/abs/2506.10960},
79
  }
80
- ```
 
 
 
1
  ---
2
+ datasets:
3
+ - zjunlp/ChineseHarm-bench
4
  language:
5
  - zh
6
+ license: cc-by-nc-4.0
7
  pipeline_tag: text-classification
8
+ library_name: transformers
 
9
  ---
10
+
11
  ## 🚀Installation
12
 
13
  1. Clone the repositories:
 
29
 
30
  We release the following variants of our harmful content detection model:
31
 
32
+ - [**ChineseGuard-1.5B**](https://huggingface.co/zjunlp/ChineseGuard-1.5B)
33
+ - [**ChineseGuard-3B**](https://huggingface.co/zjunlp/ChineseGuard-3B)
34
+ - [**ChineseGuard-7B**](https://huggingface.co/zjunlp/ChineseGuard-7B)
35
+
36
  🔹 Single Inference (Example)
37
 
38
+ Run single-input inference using the ChineseGuard-1.5B model:
39
 
40
  ```
41
  SCRIPT_PATH="../infer/single_infer.py"
42
+ model_name="zjunlp/ChineseGuard-1.5B"
43
  text="代发短信,有想做的联系我,无押金"
44
 
45
  python $SCRIPT_PATH \
 
49
 
50
  🔸 Batch Inference (Multi-NPU or Multi-GPU)
51
 
52
+ To run inference on the entire ChineseHarm-Bench using ChineseGuard-1.5B and 8 NPUs:
53
 
54
  ```
55
  SCRIPT_PATH="../infer/batch_infer.py"
56
+ model_name="zjunlp/ChineseHarm-1.5B"
57
  file_name="../benchmark/bench.json"
58
+ output_file="../benchmark/bench_ChineseHarm-1.5B.json"
59
 
60
  python $SCRIPT_PATH \
61
  --model_name $model_name \
 
69
  >
70
  > **Note:** The inference scripts support both NPU and GPU devices.
71
 
72
+ **Evaluation: Calculating F1 Score**
73
+
74
+ After inference, evaluate the predictions by computing the F1 score with the following command:
75
+
76
+ ```
77
+ python ../calculate_metrics.py \
78
+ --file_path "../benchmark/bench_ChineseHarm-1.5B.json" \
79
+ --true_label_field "标签" \
80
+ --predicted_label_field "predict_label"
81
+ ```
82
+
83
  ## 🚩Citation
84
 
85
+ Please cite our repository if you use ChineseHarm-bench in your work. Thanks!
86
 
87
  ```bibtex
88
  @misc{liu2025chineseharmbenchchineseharmfulcontent,
 
94
  primaryClass={cs.CL},
95
  url={https://arxiv.org/abs/2506.10960},
96
  }
97
+ ```
98
+
99
+ Codebase: https://github.com/zjunlp/ChineseHarm-bench