EYEDOL commited on
Commit
920051b
Β·
verified Β·
1 Parent(s): 98be87c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +48 -28
README.md CHANGED
@@ -22,39 +22,39 @@ pipeline_tag: text-generation
22
 
23
  # 🧠 SALAMA LLM β€” Swahili Instruction-Tuned Text Generation Model
24
 
25
- **Developer:** AI4NNOV
26
- **Authors:** AI4NNOV.
27
- **Version:** v1.0
28
- **License:** Apache 2.0
29
- **Model Type:** Instruction-Tuned Large Language Model
30
- **Base Model:** `Jacaranda/UlizaLlama`
31
 
32
  ---
33
 
34
  ## 🌍 Overview
35
 
36
  **SALAMA LLM** is the **language understanding and generation engine** of the **SALAMA Framework** β€” a modular Speech-to-Speech (STS) AI pipeline built for African languages.
37
- The model is fine-tuned on Swahili instruction datasets to enable natural, culturally relevant responses in text generation, summarization, question answering, and translation.
38
 
39
- This model represents a major step in bridging the linguistic digital divide by providing high-quality Swahili AI text generation capabilities within an open, scalable framework.
40
 
41
  ---
42
 
43
- ## 🧱 Model Architecture
44
 
45
  SALAMA LLM is based on **Jacaranda/UlizaLlama**, fine-tuned using **Parameter-Efficient Fine-Tuning (PEFT)** via **LoRA/QLoRA**.
46
  The architecture supports mixed Swahili-English text inputs while focusing on fluent Swahili text generation for both casual and formal domains.
47
 
48
  | Parameter | Value |
49
  |------------|--------|
50
- | Base Model | `Jacaranda/UlizaLlama` |
51
- | Fine-Tuning | QLoRA / LoRA (PEFT) |
52
- | Precision | 4-bit quantization |
53
- | Optimizer | AdamW |
54
- | Learning Rate | 2e-5 |
55
- | Epochs | 3–5 |
56
- | Frameworks | Transformers, TRL, PEFT, Unsloth |
57
- | Languages | Swahili (sw), English (en) |
58
 
59
  ---
60
 
@@ -70,11 +70,11 @@ The architecture supports mixed Swahili-English text inputs while focusing on fl
70
 
71
  ## 🧠 Model Capabilities
72
 
73
- - Text generation in **Swahili and English**
74
- - Instruction-following, summarization, and dialogue
75
- - Question answering and translation (EN ↔ SW)
76
- - Sentiment and named-entity recognition
77
- - Contextually and culturally aligned text generation
78
 
79
  ---
80
 
@@ -120,11 +120,11 @@ outputs = model.generate(
120
  )
121
 
122
  print(tokenizer.decode(outputs[0], skip_special_tokens=True))
 
123
 
 
124
 
125
- **Example Output:**
126
-
127
- > *β€œElimu ni msingi wa maendeleo, humwezesha mtu kuelewa dunia na kuboresha maisha yake na jamii kwa ujumla.”*
128
 
129
  ---
130
 
@@ -132,16 +132,16 @@ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
132
 
133
  - 🧩 Optimized for African low-resource NLP contexts
134
  - πŸ’¬ Instruction-following in Swahili and English
135
- - βš™οΈ Lightweight and efficient** (QLoRA-fine-tuned, runs on single 24 GB GPU)
136
  - 🌍 Culturally aligned text generation
137
- - πŸͺΆ Open-source and extendable to other African languages
138
 
139
  ---
140
 
141
  ## 🚫 Limitations
142
 
143
  - ⚠️ May underperform with heavy code-switching (Swahili-English mix)
144
- - πŸ—£οΈ Not yet optimized for rare dialects or poetic forms
145
  - πŸ“š Limited exposure to specialized (medical/legal) corpora
146
  - πŸ”Š Relies on accurate STT transcription in end-to-end speech-to-speech use
147
 
@@ -154,3 +154,23 @@ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
154
  | [`EYEDOL/salama-stt`](https://huggingface.co/EYEDOL/salama-stt) | Swahili Speech-to-Text model (Whisper-small fine-tuned) |
155
  | [`EYEDOL/salama-tts`](https://huggingface.co/EYEDOL/salama-tts) | Swahili Text-to-Speech model (VITS architecture) |
156
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
 
23
  # 🧠 SALAMA LLM β€” Swahili Instruction-Tuned Text Generation Model
24
 
25
+ **πŸ‘¨β€πŸ’» Developer:** AI4NNOV
26
+ **✍️ Authors:** AI4NNOV
27
+ **πŸ“¦ Version:** v1.0
28
+ **πŸ“œ License:** Apache 2.0
29
+ **πŸ› οΈ Model Type:** Instruction-Tuned Large Language Model
30
+ **🧩 Base Model:** `Jacaranda/UlizaLlama`
31
 
32
  ---
33
 
34
  ## 🌍 Overview
35
 
36
  **SALAMA LLM** is the **language understanding and generation engine** of the **SALAMA Framework** β€” a modular Speech-to-Speech (STS) AI pipeline built for African languages.
37
+ The model is fine-tuned on Swahili instruction datasets to enable natural, culturally relevant responses in text generation, summarization, question answering, and translation.
38
 
39
+ This model represents a major step in bridging the linguistic digital divide by providing **high-quality Swahili AI text generation** capabilities within an open, scalable framework.
40
 
41
  ---
42
 
43
+ ## 🧱️ Model Architecture
44
 
45
  SALAMA LLM is based on **Jacaranda/UlizaLlama**, fine-tuned using **Parameter-Efficient Fine-Tuning (PEFT)** via **LoRA/QLoRA**.
46
  The architecture supports mixed Swahili-English text inputs while focusing on fluent Swahili text generation for both casual and formal domains.
47
 
48
  | Parameter | Value |
49
  |------------|--------|
50
+ | **Base Model** | `Jacaranda/UlizaLlama` |
51
+ | **Fine-Tuning** | QLoRA / LoRA (PEFT) |
52
+ | **Precision** | 4-bit quantization |
53
+ | **Optimizer** | AdamW |
54
+ | **Learning Rate** | 2e-5 |
55
+ | **Epochs** | 3–5 |
56
+ | **Frameworks** | Transformers, TRL, PEFT, Unsloth |
57
+ | **Languages** | Swahili (sw), English (en) |
58
 
59
  ---
60
 
 
70
 
71
  ## 🧠 Model Capabilities
72
 
73
+ βœ… Text generation in **Swahili and English**
74
+ βœ… Instruction-following, summarization, and dialogue
75
+ βœ… Question answering and translation (EN ↔ SW)
76
+ βœ… Sentiment and named-entity recognition
77
+ βœ… Contextually and culturally aligned text generation
78
 
79
  ---
80
 
 
120
  )
121
 
122
  print(tokenizer.decode(outputs[0], skip_special_tokens=True))
123
+ ```
124
 
125
+ **🦩 Example Output:**
126
 
127
+ > β€œElimu ni msingi wa maendeleo, humwezesha mtu kuelewa dunia na kuboresha maisha yake na jamii kwa ujumla.”
 
 
128
 
129
  ---
130
 
 
132
 
133
  - 🧩 Optimized for African low-resource NLP contexts
134
  - πŸ’¬ Instruction-following in Swahili and English
135
+ - βš™οΈ Lightweight and efficient (QLoRA fine-tuned; runs on single 24 GB GPU)
136
  - 🌍 Culturally aligned text generation
137
+ - 🦢 Open-source and extendable to other African languages
138
 
139
  ---
140
 
141
  ## 🚫 Limitations
142
 
143
  - ⚠️ May underperform with heavy code-switching (Swahili-English mix)
144
+ - πŸ‘€ Not yet optimized for rare dialects or poetic forms
145
  - πŸ“š Limited exposure to specialized (medical/legal) corpora
146
  - πŸ”Š Relies on accurate STT transcription in end-to-end speech-to-speech use
147
 
 
154
  | [`EYEDOL/salama-stt`](https://huggingface.co/EYEDOL/salama-stt) | Swahili Speech-to-Text model (Whisper-small fine-tuned) |
155
  | [`EYEDOL/salama-tts`](https://huggingface.co/EYEDOL/salama-tts) | Swahili Text-to-Speech model (VITS architecture) |
156
 
157
+ ---
158
+
159
+ ## 🧾 Citation
160
+
161
+ If you use **SALAMA LLM**, please cite:
162
+
163
+ ```bibtex
164
+ @misc{salama_llm_2025,
165
+ title={SALAMA LLM: Swahili Instruction-Tuned Text Generation Model},
166
+ author={AI4NNOV},
167
+ year={2025},
168
+ publisher={Hugging Face},
169
+ howpublished={\url{https://huggingface.co/EYEDOL/salama-llm}}
170
+ }
171
+ ```
172
+
173
+ ---
174
+
175
+ **πŸ’‘ β€œElimu ni msingi wa maendeleo β€” Knowledge is the foundation of progress.”**
176
+