|
|
--- |
|
|
library_name: peft |
|
|
license: mit |
|
|
base_model: THUDM/GLM-4-32B-0414 |
|
|
tags: |
|
|
- axolotl |
|
|
- generated_from_trainer |
|
|
datasets: |
|
|
- anthracite-core/magnum-v5-sft-proto-glm4-instruct-rev1 |
|
|
model-index: |
|
|
- name: magnum-v5-sft-prototype-glm4-32b-lora |
|
|
results: [] |
|
|
--- |
|
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
|
|
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) |
|
|
<details><summary>See axolotl config</summary> |
|
|
|
|
|
axolotl version: `0.8.0` |
|
|
```yaml |
|
|
base_model: THUDM/GLM-4-32B-0414 |
|
|
#base_model_ignore_patterns: "*/*" |
|
|
# optionally might have model_type or tokenizer_type |
|
|
model_type: AutoModelForCausalLM |
|
|
tokenizer_type: AutoTokenizer |
|
|
# Automatically upload checkpoint and final model to HF |
|
|
hub_model_id: anthracite-core/magnum-v5-sft-prototype-glm4-32b-lora |
|
|
hub_strategy: "all_checkpoints" |
|
|
push_dataset_to_hub: |
|
|
hf_use_auth_token: true |
|
|
|
|
|
|
|
|
load_in_8bit: false |
|
|
load_in_4bit: false |
|
|
strict: false |
|
|
|
|
|
datasets: |
|
|
- path: anthracite-core/magnum-v5-sft-proto-glm4-instruct-rev1 |
|
|
ds_type: parquet |
|
|
type: |
|
|
shuffle_merged_datasets: true |
|
|
dataset_prepared_path: ./data/magnum-32b-data |
|
|
val_set_size: 0.01 |
|
|
output_dir: ./data/32b-lora-out |
|
|
|
|
|
plugins: |
|
|
- axolotl.integrations.liger.LigerPlugin |
|
|
- axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin |
|
|
#liger_rope: false |
|
|
liger_rms_norm: true |
|
|
liger_layer_norm: true |
|
|
liger_glu_activation: true |
|
|
liger_fused_linear_cross_entropy: true |
|
|
cut_cross_entropy: true |
|
|
|
|
|
sequence_len: 32768 |
|
|
sample_packing: true |
|
|
eval_sample_packing: true |
|
|
pad_to_sequence_len: true |
|
|
|
|
|
adapter: lora |
|
|
lora_model_dir: |
|
|
lora_r: 128 |
|
|
lora_alpha: 16 |
|
|
lora_dropout: 0.05 |
|
|
lora_target_linear: true |
|
|
lora_fan_in_fan_out: |
|
|
peft_use_rslora: true |
|
|
lora_modules_to_save: |
|
|
- embed_tokens |
|
|
- lm_head |
|
|
|
|
|
wandb_project: 32b-magnum-lora |
|
|
wandb_entity: |
|
|
wandb_watch: |
|
|
wandb_name: run4-Lora-0.001-clip |
|
|
wandb_log_model: |
|
|
|
|
|
gradient_accumulation_steps: 2 |
|
|
micro_batch_size: 1 |
|
|
num_epochs: 2 |
|
|
optimizer: paged_ademamix_8bit |
|
|
lr_scheduler: cosine |
|
|
learning_rate: 2e-4 |
|
|
max_grad_norm: 0.001 |
|
|
|
|
|
train_on_inputs: false |
|
|
group_by_length: false |
|
|
bf16: auto |
|
|
fp16: |
|
|
tf32: false |
|
|
|
|
|
gradient_checkpointing: true |
|
|
early_stopping_patience: |
|
|
resume_from_checkpoint: |
|
|
local_rank: |
|
|
logging_steps: 1 |
|
|
xformers_attention: |
|
|
flash_attention: true |
|
|
s2_attention: |
|
|
|
|
|
warmup_steps: 40 |
|
|
evals_per_epoch: 4 |
|
|
eval_table_size: |
|
|
eval_max_new_tokens: |
|
|
saves_per_epoch: 2 |
|
|
debug: |
|
|
deepspeed: ./deepspeed_configs/zero3_bf16.json |
|
|
weight_decay: 0.01 |
|
|
fsdp: |
|
|
fsdp_config: |
|
|
special_tokens: |
|
|
|
|
|
``` |
|
|
|
|
|
</details><br> |
|
|
|
|
|
# magnum-v5-sft-prototype-glm4-32b-lora |
|
|
|
|
|
This model is a fine-tuned version of [THUDM/GLM-4-32B-0414](https://huggingface.co/THUDM/GLM-4-32B-0414) on the anthracite-core/magnum-v5-sft-proto-glm4-instruct-rev1 dataset. |
|
|
It achieves the following results on the evaluation set: |
|
|
- Loss: 1.1075 |
|
|
|
|
|
## Model description |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Intended uses & limitations |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Training and evaluation data |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Training procedure |
|
|
|
|
|
### Training hyperparameters |
|
|
|
|
|
The following hyperparameters were used during training: |
|
|
- learning_rate: 0.0002 |
|
|
- train_batch_size: 1 |
|
|
- eval_batch_size: 1 |
|
|
- seed: 42 |
|
|
- distributed_type: multi-GPU |
|
|
- num_devices: 8 |
|
|
- gradient_accumulation_steps: 2 |
|
|
- total_train_batch_size: 16 |
|
|
- total_eval_batch_size: 8 |
|
|
- optimizer: Use paged_ademamix_8bit and the args are: |
|
|
No additional optimizer arguments |
|
|
- lr_scheduler_type: cosine |
|
|
- lr_scheduler_warmup_steps: 40 |
|
|
- num_epochs: 2.0 |
|
|
|
|
|
### Training results |
|
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|
|:-------------:|:------:|:----:|:---------------:| |
|
|
| 1.3541 | 0.0024 | 1 | 1.3336 | |
|
|
| 1.1718 | 0.2503 | 103 | 1.1633 | |
|
|
| 1.1976 | 0.5006 | 206 | 1.1460 | |
|
|
| 1.095 | 0.7509 | 309 | 1.1339 | |
|
|
| 1.1076 | 1.0 | 412 | 1.1213 | |
|
|
| 1.1063 | 1.2503 | 515 | 1.1128 | |
|
|
| 1.1214 | 1.5006 | 618 | 1.1089 | |
|
|
| 1.0286 | 1.7509 | 721 | 1.1075 | |
|
|
|
|
|
|
|
|
### Framework versions |
|
|
|
|
|
- PEFT 0.15.1 |
|
|
- Transformers 4.51.3 |
|
|
- Pytorch 2.6.0+cu124 |
|
|
- Datasets 3.5.0 |
|
|
- Tokenizers 0.21.1 |