EzraWilliam's picture
End of training
909c7c6 verified
|
raw
history blame
2.89 kB
metadata
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
  - generated_from_trainer
datasets:
  - xtreme_s
metrics:
  - wer
model-index:
  - name: wav2vec2-XLS-R-Fleurs-demo-google-colab-Ezra_William_Prod2
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: xtreme_s
          type: xtreme_s
          config: fleurs.id_id
          split: test
          args: fleurs.id_id
        metrics:
          - name: Wer
            type: wer
            value: 1

wav2vec2-XLS-R-Fleurs-demo-google-colab-Ezra_William_Prod2

This model is a fine-tuned version of facebook/wav2vec2-base on the xtreme_s dataset. It achieves the following results on the evaluation set:

  • Loss: 2.8837
  • Wer: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.005
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • num_epochs: 60
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3.962 3.08 100 2.8983 1.0
2.9085 6.15 200 2.8864 1.0
2.9094 9.23 300 2.9040 1.0
2.8976 12.31 400 2.9628 1.0
2.901 15.38 500 2.8694 1.0
2.8913 18.46 600 2.8954 1.0
2.8918 21.54 700 2.8726 1.0
2.892 24.62 800 2.8865 1.0
2.8856 27.69 900 2.9127 1.0
2.8893 30.77 1000 2.8989 1.0
2.8862 33.85 1100 2.8831 1.0
2.8853 36.92 1200 2.8960 1.0
2.8856 40.0 1300 2.8911 1.0
2.8849 43.08 1400 2.8926 1.0
2.8829 46.15 1500 2.8837 1.0
2.8812 49.23 1600 2.8859 1.0
2.8825 52.31 1700 2.8858 1.0
2.8833 55.38 1800 2.8856 1.0
2.88 58.46 1900 2.8837 1.0

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.2+cu121
  • Datasets 1.18.3
  • Tokenizers 0.15.1