|
|
--- |
|
|
license: apache-2.0 |
|
|
base_model: facebook/wav2vec2-base |
|
|
tags: |
|
|
- generated_from_trainer |
|
|
datasets: |
|
|
- xtreme_s |
|
|
metrics: |
|
|
- wer |
|
|
model-index: |
|
|
- name: wav2vec2-XLS-R-Fleurs-demo-google-colab-Ezra_William_Prod2 |
|
|
results: |
|
|
- task: |
|
|
name: Automatic Speech Recognition |
|
|
type: automatic-speech-recognition |
|
|
dataset: |
|
|
name: xtreme_s |
|
|
type: xtreme_s |
|
|
config: fleurs.id_id |
|
|
split: test |
|
|
args: fleurs.id_id |
|
|
metrics: |
|
|
- name: Wer |
|
|
type: wer |
|
|
value: 1.0 |
|
|
--- |
|
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
|
|
# wav2vec2-XLS-R-Fleurs-demo-google-colab-Ezra_William_Prod2 |
|
|
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the xtreme_s dataset. |
|
|
It achieves the following results on the evaluation set: |
|
|
- Loss: 2.8837 |
|
|
- Wer: 1.0 |
|
|
|
|
|
## Model description |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Intended uses & limitations |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Training and evaluation data |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Training procedure |
|
|
|
|
|
### Training hyperparameters |
|
|
|
|
|
The following hyperparameters were used during training: |
|
|
- learning_rate: 0.005 |
|
|
- train_batch_size: 8 |
|
|
- eval_batch_size: 8 |
|
|
- seed: 42 |
|
|
- gradient_accumulation_steps: 2 |
|
|
- total_train_batch_size: 16 |
|
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
|
- lr_scheduler_type: linear |
|
|
- lr_scheduler_warmup_steps: 200 |
|
|
- num_epochs: 60 |
|
|
- mixed_precision_training: Native AMP |
|
|
|
|
|
### Training results |
|
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|
|:-------------:|:-----:|:----:|:---------------:|:---:| |
|
|
| 3.962 | 3.08 | 100 | 2.8983 | 1.0 | |
|
|
| 2.9085 | 6.15 | 200 | 2.8864 | 1.0 | |
|
|
| 2.9094 | 9.23 | 300 | 2.9040 | 1.0 | |
|
|
| 2.8976 | 12.31 | 400 | 2.9628 | 1.0 | |
|
|
| 2.901 | 15.38 | 500 | 2.8694 | 1.0 | |
|
|
| 2.8913 | 18.46 | 600 | 2.8954 | 1.0 | |
|
|
| 2.8918 | 21.54 | 700 | 2.8726 | 1.0 | |
|
|
| 2.892 | 24.62 | 800 | 2.8865 | 1.0 | |
|
|
| 2.8856 | 27.69 | 900 | 2.9127 | 1.0 | |
|
|
| 2.8893 | 30.77 | 1000 | 2.8989 | 1.0 | |
|
|
| 2.8862 | 33.85 | 1100 | 2.8831 | 1.0 | |
|
|
| 2.8853 | 36.92 | 1200 | 2.8960 | 1.0 | |
|
|
| 2.8856 | 40.0 | 1300 | 2.8911 | 1.0 | |
|
|
| 2.8849 | 43.08 | 1400 | 2.8926 | 1.0 | |
|
|
| 2.8829 | 46.15 | 1500 | 2.8837 | 1.0 | |
|
|
| 2.8812 | 49.23 | 1600 | 2.8859 | 1.0 | |
|
|
| 2.8825 | 52.31 | 1700 | 2.8858 | 1.0 | |
|
|
| 2.8833 | 55.38 | 1800 | 2.8856 | 1.0 | |
|
|
| 2.88 | 58.46 | 1900 | 2.8837 | 1.0 | |
|
|
|
|
|
|
|
|
### Framework versions |
|
|
|
|
|
- Transformers 4.35.2 |
|
|
- Pytorch 2.1.2+cu121 |
|
|
- Datasets 1.18.3 |
|
|
- Tokenizers 0.15.1 |
|
|
|